This paper contains a description of various geometric constructions associated with fibre bundles, given in terms of important algebraic object, the “twisting cochain". Our examples include the Chern-Weil classes, the holonomy representation and the so-called cyclic Chern character of Bismut and others (see [2, 11, 27]), also called the Bismut’s class. The later example is the principal one for us, since we are motivated by the attempt to find an algebraic approach to the Witten’s index formula. We also give several examples of the twisting cochain associated with a given principal bundle. In particular, our approach allows us to obtain explicit formulas for the Chern classes and for an analogue of the cyclic Chern character in the terms of the glueing functions of the principal bundle. We discuss few modifications of this construction. We hope that this approach can turn fruitful for the investigations of the Witten index formula.
Nous proposons diverses constructions naturelles que l’on peut associer à un espace fibré. Nous les décrivons à l’aide d’un objet algébrique appelé « la cochaîne tordue » (« twisting cochains »). Nous considérons les classes caractéristiques de Chern-Weil, la représentation d’holonomie et le caractère de Chern cyclique défini par Bismut. Nous cherchons une approche algébrique de la formule de l’index de Witten. En outre, nous donnons quelques constructions explicites de la « cochaîne tordue » associée au fibré principal donné. En particulier, nos méthodes permettent d’obtenir des formules explicites pour les classes de Chern et pour un analogue du caractère de Chern cyclique en fonction du cocycle noncommutatif qui définit ce fibré principal. Nous discutons aussi certaines versions modifiées de cette construction. On espère que ces idées peuvent être utile pour l’étude de formule d’index de Witten.
@article{AFST_2011_6_20_2_295_0, author = {G. Sharygin}, title = {Holonomy, twisting cochains and characteristic classes}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {295--366}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 20}, number = {2}, year = {2011}, doi = {10.5802/afst.1294}, mrnumber = {2847886}, zbl = {1276.57028}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1294/} }
TY - JOUR AU - G. Sharygin TI - Holonomy, twisting cochains and characteristic classes JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2011 SP - 295 EP - 366 VL - 20 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1294/ DO - 10.5802/afst.1294 LA - en ID - AFST_2011_6_20_2_295_0 ER -
%0 Journal Article %A G. Sharygin %T Holonomy, twisting cochains and characteristic classes %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2011 %P 295-366 %V 20 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1294/ %R 10.5802/afst.1294 %G en %F AFST_2011_6_20_2_295_0
G. Sharygin. Holonomy, twisting cochains and characteristic classes. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 20 (2011) no. 2, pp. 295-366. doi : 10.5802/afst.1294. https://afst.centre-mersenne.org/articles/10.5802/afst.1294/
[1] Anderson (D.W.).— A generalization of the Eilenberg-Moore spectral sequence, Bulletin of the Amer. Math. Soc. 78 Number 5, p. 784-786 (1972). | MR | Zbl
[2] Bismut (J.-M.).— Le théorème d’Atiyah-Singer pour les opérateurs elliptiques classiques: une approche probabiliste C. R. Acad. Sci. Paris Sér. I Math., 297 No.8, p. 481-484 (1983). | MR | Zbl
[3] Bott (R.), Tu (L.W.).— Differential Forms in Algebraic Topology, Springer-Verlag, Berlin-Heiderberg-New York, (1982). | MR | Zbl
[4] Bott (R.), Segal (G.).— The Cohomology of the Vector Fields on a Manifold, Topology, 16, p. 285-298 (1977). | MR | Zbl
[5] Bousfield (A. K.), Gugenheim (V. K. A. M.).— On de Rham theory and rational homotopy type, Memoirs of AMS, 8, p. 179 (1976). | MR | Zbl
[6] Bousfield (A. K.), Kan (D. M.).— Homotopy limits, completions and localizations, Lect. Notes in Math. No.304, Springer-verlag, Berlin-Heidelberg-New York (1972). | MR | Zbl
[7] Brown (E.).— Twisted tensor products, Ann. of Math, 69, p. 223-246 (1959). | MR | Zbl
[8] Chen (K.T.).— Iterated integrals of differential forms and loop space homology, Ann. Math. 97, p. 217-246 (1973). | MR | Zbl
[9] Chen (K.T.).— Extension of -function algebra by integrals and Malcev completion of , Adv. Math. 23, p. 181-210 (1977). | MR | Zbl
[10] Dupont (J.-L.).— Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology 15, p. 233-245 (1976) | MR | Zbl
[11] Getzler (E.), Jones (J.D.S.), Petrack (S.).— Differential forms on loop space and the cyclic bar complex, Topology 30, p. 339-371 (1991). | MR | Zbl
[12] Goerss (P.G.), Jardine (J.F.).— Simplicial homotopy theory, Birkhäuser (1997). | MR
[13] Grothendieck (A.).— On the De Rham cohomology of algebraic varieties, Publ. math. de l’IHES, tome 29, p. 95-103 (1966). | Numdam | MR | Zbl
[14] Jones (J.D.S.).— Cyclic homology and equivariant homology, Invent. Math. 87, p. 403-423 (1987). | MR | Zbl
[15] Kan (D. M.).— A combinatorial definition of homotopy groups, Ann. of Math. 67, p. 282-312 (1958). | MR | Zbl
[16] McLane (S.).— Homology, Springer-Verlag, Berlin-Heidelberg-New York (1963). | MR | Zbl
[17] May (J.P.).— Simplicial methods in algebraic topology, U.Chicago (1967).
[18] Onishchik (A.L.).— Topology of transitive transformation groups, Fizmatlit, Moscow (1995), in Russian | MR
[19] Segal (G.).— Categories and cohomology theories, Topology 13, p. 293-312 (1974). | MR | Zbl
[20] Smirnov (V.A.).— Functor for twisted tensor products, Mat. Zametki 20, p. 465-472 (1976), in Russian. | MR | Zbl
[21] Smirnov (V.A.).— Functor and the strong homotopy, Mat. Zametki 21, p. 557-564 (1977), in Russian. | MR | Zbl
[22] Smirnov (V.A.).— Simplicial and Operad Methods in Algebraic Topology, AMS, Transl. Math. Monogr. 198 (2001). | MR | Zbl
[23] Sharygin (G.I.).— Local formulae for characteristic classes of a principal -bundle, Matematicheskii Sbornik 199:10, p. 127-158 (2008), in Russian; translated in: Sbornik: Mathematics 199:10 p. 1547-1577 (2008). | MR | Zbl
[24] Shih (W.T.).— Homology des espaces fibrés, Publications Math. de l’IHES 13, p. 93-176 (1962). | Numdam | Zbl
[25] Sweedler (M.E.).— Hopf algebras, W. A. Benjamin, New-York (1969). | MR | Zbl
[26] Woronowicz (S.L.).— Differential calculus on compact matrix pseudogroups (Quantum Groups) Comm. Math. Phys. 122 Nr 1, p. 125-170 (1989). | MR | Zbl
[27] Zamboni (L.Q.).— A Chern character in cyclic homology, Trans. of AMS 331, p. 157-163 (1992). | MR | Zbl
Cited by Sources: