We investigate real analytic Levi-flat hypersurfaces tangent to holomorphic webs. We introduce the notion of first integrals for local webs. In particular, we prove that a -web with finitely many invariant subvarieties through the origin tangent to a Levi-flat hypersurface has a holomorphic first integral.
Nous étudions les hypersurfaces analytiques réelles Levi-plates tangentes à un tissu holomorphe. Nous introduisons la notion d’intégrale première pour un tissu défini localement. En particulier, nous prouvons qu’un -tissu admettant un nombre fini de sous-variétés invariantes passant par l’origine et tangentes à une hypersurface Levi-plate possède une intégrale première holomorphe.
@article{AFST_2011_6_20_3_581_0, author = {Arturo Fern\'andez-P\'erez}, title = {On {Levi-flat} hypersurfaces tangent to holomorphic webs}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {581--597}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 20}, number = {3}, year = {2011}, doi = {10.5802/afst.1318}, mrnumber = {2894839}, zbl = {1232.53022}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1318/} }
TY - JOUR AU - Arturo Fernández-Pérez TI - On Levi-flat hypersurfaces tangent to holomorphic webs JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2011 SP - 581 EP - 597 VL - 20 IS - 3 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1318/ DO - 10.5802/afst.1318 LA - en ID - AFST_2011_6_20_3_581_0 ER -
%0 Journal Article %A Arturo Fernández-Pérez %T On Levi-flat hypersurfaces tangent to holomorphic webs %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2011 %P 581-597 %V 20 %N 3 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1318/ %R 10.5802/afst.1318 %G en %F AFST_2011_6_20_3_581_0
Arturo Fernández-Pérez. On Levi-flat hypersurfaces tangent to holomorphic webs. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 20 (2011) no. 3, pp. 581-597. doi : 10.5802/afst.1318. https://afst.centre-mersenne.org/articles/10.5802/afst.1318/
[1] Burns (D.), Gong (X.).— Singular Levi-flat real analytic hypersurfaces, Amer. J. Math. 121, p. 23-53 . | MR | Zbl
[2] Brunella (M.).— Singular Levi-flat hypersurfaces and codimension one foliations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6, no. 4, p. 661-672 (2007). | Numdam | MR | Zbl
[3] Cavalier (V.), Lehmann (D.).— Introduction à l’étude globale des tissus sur une surface holomorphe. Ann. Inst. Fourier (Grenoble) 57, no. 4, p. 1095-1133 (2007). | Numdam | MR | Zbl
[4] Cavalier (V), Lehmann (D.).— Global structure of holomorphic webs on surfaces. Geometry and topology of caustics-CAUSTICS ’06, 35-44, Banach Center Publ., 82, Polish Acad. Sci. Inst. Math., Warsaw (2008). | MR | Zbl
[5] Cerveau (D.), Lins Neto (A.).— Local Levi-flat hypersurfaces invariants by a codimension one holomorphic foliation, To appear in Amer. J. Math.
[6] Fernández-Pérez (A.).— On normal forms of singular Levi-flat real analytic hypersurfaces. Bull. Braz. Math. Soc. (N.S.) 42, no. 1, p. 75-85 (2011). | MR | Zbl
[7] Fernández-Pérez (A.).— Singular Levi-flat hypersurfaces. An approach through holomorphic foliations. Ph.D Thesis IMPA, Brazil (2010).
[8] Gunning (R.).— Introduction to holomorphic functions of several variables. Vol. II. Local theory. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA (1990). | MR
[9] Lebl (J.).— Singularities and complexity in CR geometry. Ph.D. Thesis, University of California at San Diego, Spring (2007). | MR
[10] Loray (F.).— Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux. ; http://hal.archives-ouvertures.fr/ccsd-00016434
[11] Mattei (J.F.), Moussu (R.).— Holonomie et intégrales premières, Ann. Ec. Norm. Sup. 13, p. 469-523 . | Numdam | MR | Zbl
[12] Pereira (J.V.), Pirio (L.).— An invitation to web geometry. From Abel’s addition theorem to the algebraization of codimension one webs. Publicações Matemáticas do IMPA. Rio de Janeiro (2009). | MR | Zbl
[13] Seidenberg (A.).— Reduction of singularities of the differential equation . Amer. J. Math. 90, p. 248-269 . | MR | Zbl
[14] Yartey (J.N.A).— Number of singularities of a generic web on the complex projective plane. J. Dyn. Control Syst. 11, no. 2, p. 281-296 (2005). | MR | Zbl
[15] Siu (Y.T.).— Techniques of extension of analytic objects. Lecture Notes in Pure and Applied Mathematics, Vol. 8. Marcel Dekker, Inc., New York (1974). | MR | Zbl
Cited by Sources: