The notion of a real semigroup was introduced in [8] to provide a framework for the investigation of the theory of (diagonal) quadratic forms over commutative, unitary, semi-real rings. In this paper we introduce and study an outstanding class of such structures, that we call spectral real semigroups (SRS). Our main results are: (i) The existence of a natural functorial duality between the category of SRSs and that of hereditarily normal spectral spaces; (ii) Characterization of the SRSs as the real semigroups whose representation partial order is a distributive lattice; (iii) Determination of all quotients of SRSs, and (iv) Spectrality of the real semigroup associated to any lattice-ordered ring.
Dans [8] nous avons introduit la notion de semigroupe réel dans le but de donner un cadre général pour l’étude des formes quadratiques diagonales sur des anneaux commutatifs, unitaires, semi-réels. Dans cet article nous étudions une classe de semigroupes réels avec des propriétés remarquables : les semigroupes réels spectraux (SRS). Nos résultats principaux sont : (i) l’existence d’une dualité fonctorielle naturelle entre la catégorie des SRS et celle des espaces spectraux héréditairement normaux ; (ii) la caractérisation des SRS comme étant les semigroupes réels dont l’ordre de représentation est un treillis distributif ; (iii) la détermination des quotients des SRS ; (iv) le caractére spectral des semigroupes réels associés aux anneaux réticulés.
@article{AFST_2012_6_21_2_359_0, author = {M. Dickmann and A. Petrovich}, title = {Spectral {Real} {Semigroups}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {359--412}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 21}, number = {2}, year = {2012}, doi = {10.5802/afst.1338}, mrnumber = {2978099}, zbl = {1271.11047}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1338/} }
TY - JOUR AU - M. Dickmann AU - A. Petrovich TI - Spectral Real Semigroups JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2012 SP - 359 EP - 412 VL - 21 IS - 2 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1338/ DO - 10.5802/afst.1338 LA - en ID - AFST_2012_6_21_2_359_0 ER -
%0 Journal Article %A M. Dickmann %A A. Petrovich %T Spectral Real Semigroups %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2012 %P 359-412 %V 21 %N 2 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1338/ %R 10.5802/afst.1338 %G en %F AFST_2012_6_21_2_359_0
M. Dickmann; A. Petrovich. Spectral Real Semigroups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 21 (2012) no. 2, pp. 359-412. doi : 10.5802/afst.1338. https://afst.centre-mersenne.org/articles/10.5802/afst.1338/
[1] Andradas (C.), Bröcker (L.), Ruiz (J.).— Constructible Sets in Real Geometry, A Series of Modern Surveys in Mathematics 33, Springer-Verlag, Berlin, Heidelberg, New York (1996). | MR | Zbl
[2] Bochnak (J.), Coste (M.), Roy (M.F.).— Géométrie algébrique réelle, Ergeb. Math. 12, Springer-Verlag, Berlin, Heidelberg, New York (1987). | MR | Zbl
[3] Bigard (A.), Keimel (K.), Wolfenstein (S.).— Groupes et Anneaux Reticulés, Lecture Notes Math. 608, Springer-Verlag, Berlin, (1977). | MR | Zbl
[4] Chang (C.C.) and Keisler (H.J.).— Model Theory, North-Holland Publ. Co. Amsterdam, (1990). | MR | Zbl
[5] Delzell (C.), Madden (J.).— A completely normal spectral space that is not a real spectrum, J. Algebra 169, p. 71-77 (1994). | MR | Zbl
[6] Dickmann (M.), Miraglia (F.).— Special Groups. Boolean-Theoretic Methods in the Theory of Quadratic Forms, Memoirs Amer. Math. Soc., 689 (2000). | MR
[7] Dickmann (M.), Miraglia (F.).— Faithfully Quadratic Rings, 160 pp., (submitted) (2010).
[8] Dickmann (M.), Petrovich (A.).— Real Semigroups and Abstract Real Spectra. I, Contemporary Math. 344, p. 99-119, Amer. Math. Soc. (2004). | MR
[9] Dickmann (M.), Petrovich (A.).— The Three-Valued Logic of Quadratic Form Theory over Real Rings, in Andrzej Mostowski and Foundational Studies (A. Ehrenfeucht, V. W. Marek, M. Srebrny, eds.), IOS Press, Amsterdam, p. 49-67 (2008). | MR
[10] Dickmann (M.), Petrovich (A.).— Real Semigroups, Real Spectra and Quadratic Forms over Rings, in preparation, approx. 250 pp. Preliminary version available online at http://www.maths.manchester.ac.uk/raag/index.php?preprint=0339 | MR
[11] Dickmann (M.), Schwartz (N.), Tressl (M.).— Spectral Spaces (in preparation).
[12] Hodges (W.).— Model Theory, Encyclopedia of Math. and Appl. 42, Cambridge Univ. Press (1993). | MR | Zbl
[13] Knebush (M.), Scheiderer (C.).— Einführung in die reelle Algebra, Vieweg, Braunschweig, x + 189 pp. (1989). | Zbl
[14] Marshall (M.).— Spaces of Orderings and Abstract Real Spectra, Lecture Notes Math. 1636, Springer-Verlag, Berlin (1996). | MR | Zbl
[15] Miraglia (F.).— Introduction to Partially Ordered Structures and Sheaves, Polimetrica Scientific Publishers, Contemporary Logic Series 1, Milan (2007).
[16] Prestel (A.), Schwartz (N.).— Model Theory of Real Closed Rings, Fields Inst. Communications 32, p. 261-290 (2002). | MR
[17] Schwartz (N.).— The basic theory of real closed spaces, Memoirs Amer. Math. Soc., 397 (1989). | MR | Zbl
Cited by Sources: