Variations on a theme of homotopy
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 22 (2013) no. 5, pp. 1045-1089.

The aim of this article is to bring together various themes from fairly elementary homotopy theory and to examine them, in part, from a historical and philosophical viewpoint.

Le but de cet article est de réunir quelques thèmes de la théorie élémentaire d’homotopie, et de les examiner, au moins partiellement, d’un point de vue historique et philosophique.

@article{AFST_2013_6_22_5_1045_0,
     author = {Timothy Porter},
     title = {Variations on a theme of homotopy},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1045--1089},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 22},
     number = {5},
     year = {2013},
     doi = {10.5802/afst.1395},
     mrnumber = {3154586},
     zbl = {1295.55001},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1395/}
}
TY  - JOUR
AU  - Timothy Porter
TI  - Variations on a theme of homotopy
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2013
SP  - 1045
EP  - 1089
VL  - 22
IS  - 5
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1395/
DO  - 10.5802/afst.1395
LA  - en
ID  - AFST_2013_6_22_5_1045_0
ER  - 
%0 Journal Article
%A Timothy Porter
%T Variations on a theme of homotopy
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2013
%P 1045-1089
%V 22
%N 5
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1395/
%R 10.5802/afst.1395
%G en
%F AFST_2013_6_22_5_1045_0
Timothy Porter. Variations on a theme of homotopy. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 22 (2013) no. 5, pp. 1045-1089. doi : 10.5802/afst.1395. https://afst.centre-mersenne.org/articles/10.5802/afst.1395/

[1] Artin (M.), Mazur (B.).— Etale homotopy, Lecture Notes in Maths., no. 100, Springer-Verlag, Berlin (1969). | MR | Zbl

[2] Batanin (M. A.).— “Homotopy coherent category theory and A -structures in monoidal categories", J. Pure. Appl. Alg. 123, p. 67-103 (1998). | MR | Zbl

[3] Baues (H. J.).— Algebraic homotopy, Cambridge Studies in Advanced Mathematics, vol. 15, Cambridge Univ. Press (1989). | MR | Zbl

[4] Baues (H. J.).— Combinatorial homotopy and 4-dimensional complexes, Walter de Gruyter (1991). | MR | Zbl

[5] Baues (H. J.).— “Homotopy types", in Handbook of Algebraic Topology (I.M. James, ed.), Elsevier, p. 1-72 (1995). | MR | Zbl

[6] Boardman (J. M.), Vogt (R. M.).— Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Maths, no. 347, Springer-Verlag (1973). | MR | Zbl

[7] Brown (E.).— “Proper homotopy theory in simplicial complexes", in Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973), 1974. | MR | Zbl

[8] Brown (K. S.).— “Abstract homotopy theory and generalized sheaf cohomology", Trans. Amer. Math. Soc 186, p. 419-458 (1973). | MR | Zbl

[9] Brown (R.).— “Crossed complexes and higher homotopy groupoids as noncommutative tools for higher dimensional local-to-global problems", in Handbook of Algebra (M. Hazewinkel, ed.), vol. 6, Elsevier B.V. North-Holland, p. 81-124 (2009). | MR | Zbl

[10] Christie (D. E.).— “Net homotopy for compacta", Trans. Amer. Math. Soc 56, p. 275-308 (1944). | MR | Zbl

[11] Cisinski (D.-C.).— Les préfaisceaux comme modèles des types d’homotopie, Astérisque, vol. 308, Société Mathématique de France (2006). | Zbl

[12] Cordier (J.-M.).— “Sur la notion de diagramme homotopiquement cohérent", Cahiers de Top. Géom. Diff. 23, p. 93-112 (1982). | Numdam | MR | Zbl

[13] Cordier (J.-M.), Porter (T.).— “Vogt’s theorem on categories of homotopy coherent diagrams", Math. Proc. Cambridge Philos. Soc. 100, no. 1, p. 65-90 (1986). | MR | Zbl

[14] Cordier (J.-M.), Porter (T.).— “Maps between homotopy coherent diagrams", Top. and its Appls. 28, p. 255-275 (1988). | MR | Zbl

[15] Cordier (J.-M.), Porter (T.).— “Fibrant diagrams, rectifications and a construction of Loday", J. Pure. Applied Alg. 67, p. 111-124 (1990). | MR | Zbl

[16] Cordier (J.-M.), Porter (T.).— “Categorical aspects of equivariant homotopy", Applied Categorical Structures 4, p. 195-212 (1996). | MR | Zbl

[17] Cordier (J.-M.), Porter (T.).— “Homotopy coherent category theory", Trans. Amer. Math. Soc. 349, p. 1-54 (1997). | MR | Zbl

[18] Cordier (J.-M.), Porter (T.).— Shape theory, categorical methods of approximation, Dover (reprint of earlier 1989 edition) (2008). | MR | Zbl

[19] Dowker (C. H.).— “Homology groups of relations", Annals of Maths 56, p. 84Ð95 (1952). | MR | Zbl

[20] Edwards (D. A.), Hastings (H. M.).— Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Maths, vol. 542, Springer-Verlag, (1976). | MR | Zbl

[21] Fantham (P. H. H.), Moore (E. J.).— “Groupoid enriched categories and homotopy theory", Canad. J. Math. 35, no. 3, p. 385-416 (1983). | MR | Zbl

[22] Fausk (H.), Isaksen (D.).— “Model structures on pro-categories", Homology, Homotopy and Applications 9, no. 1, p. 367-398 (2007). | MR | Zbl

[23] Friedlander (E. M.).— Etale homotopy of simplicial schemes, Annals of Mathematics Studies, vol. 104, Princeton University Press, Princeton, N.J. (1982). | MR | Zbl

[24] Grandis (M.).— Directed algebraic topology, New Mathematical Monographs, vol. 13, Cambridge University Press, Cambridge, (2009), Models of non-reversible worlds. | MR | Zbl

[25] Gratus (J.), Porter (T.).— “A spatial view of information", Theoretical Computer Science 365, p. 206-215 (2006). | MR | Zbl

[26] Grothendieck (A.).— “Pursuing stacks", manuscript, 600 + pages, (1983).

[27] Grothendieck (A.).— Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris), 3, Société Mathématique de France, Paris, 2003, Séminaire de géométrie algébrique du Bois Marie 1960Ð61. Directed by A. Grothendieck, With two papers by M. Raynaud, updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; (50 #7129)]. | Zbl

[28] Guiraud (Y.), Malbos (P.).— “Coherence in monoidal track categories", Mathematical Structures in Computer Science (2011), p. (to appear). | MR | Zbl

[29] Guiraud (Y.), Malbos (P.).— “Identities among relations for higher-dimensional rewriting systems", Séminaires et Congrès, SMF 26, p. 145-161 (2011). | Zbl

[30] Isaksen (D. C.).— “A model structure on the category of pro-simplicial sets", Trans. Amer. Math. Soc. 353, no. 7, p. 2805Ð2841 (electronic) (2001). | MR | Zbl

[31] Isaksen (D. C.).— “Strict model structures for pro-categories", in Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), Progr. Math., vol. 215, Birkhäuser, Basel, p. 179-198 (2004). | MR | Zbl

[32] Joyal (A.).— “Quasi-categories and Kan complexes", J. Pure Applied Alg. 175, p. 207-222 (2002). | MR | Zbl

[33] Joyal (A.) “The theory of quasi-categories and its applications", in Advanced Course on Simplicial Methods in Higher Categories (C. Casacuberta & J. Kock, eds.), i-Math, vol. II, Centre de Recerca Matemàtica, http://www.crm.cat/ HigherCategories/hc2.pdf, 2008.

[34] Kamps (K. H.).— “On exact sequences in homotopy theory", Topol. Appl. Sympos. Bydva (Yugoslavia), p. 136-141 (1972). | MR | Zbl

[35] Kamps (K. H.), Porter (T.).— Abstract homotopy and simple homotopy theory, World Scientific Publishing Co. Inc., River Edge, NJ (1997). | MR | Zbl

[36] Kan (D. M.).— “Abstract homotopy I", Proc. Nat. Acad. Sci. USA 41, p. 1092-1096 (1955). | MR | Zbl

[37] Kan (D. M.).— “On c.s.s complexes", Amer J. Math. 79, p. 449-476 (1958). | MR | Zbl

[38] Lurie (J.).— Higher topos theory, Annals of mathematics studies, no. 170, Princeton University Press (2009). | MR | Zbl

[39] Maltsiniotis (G.).— “La catégorie cubique avec connexions est une catégorie test stricte", Homology, Homotopy and Applications 11, no. 2, p. 309-326 (2009). | MR | Zbl

[40] Mardešić (S.).— “Absolute neighborhood retracts and shape theory", in History of Topology (I. M. James, ed.), Elsevier Science, Amsterdam, p. 247-268 (1999). | Zbl

[41] Mardešić (S.).— Strong shape and homology, Springer (2000). | MR | Zbl

[42] nLab.— “nLab", at http://ncatlab.org/nlab/show/HomePage.

[43] Porter (T.).— “Abstract homotopy theory in procategories", Cahiers Top. Géom. Diff. 17, no. 2, p. 113Ð124 (1976). | Numdam | MR | Zbl

[44] Porter (T.).— “Coherent prohomotopical algebra", Cahiers Top. Géom. Diff. 18, no. 2, p. 139-179 (1977). | Numdam | MR | Zbl

[45] Porter (T.).— “Coherent prohomotopy theory", Cahiers Top. Géom. Diff. 19, no. 1, p. 3-46 (1978). | Numdam | MR | Zbl

[46] Porter (T.).— “Proper homotopy theory", in Handbook of Algebraic Topology, North-Holland, Amsterdam, p. 127-167 (1995). | MR | Zbl

[47] Porter (T.).— “What ‘shape’ is space-time?", http://arxiv.org/abs/gr-qc/ 0210075 (2002).

[48] Porter (T.).— “Abstract homotopy theory, the interaction of category theory and homotopy theory", Cubo Matematica Educacional 5, p. 115-165 (2003). | MR

[49] Porter (T.).— “𝒮-categories, 𝒮-groupoids, Segal categories and quasicategories", http: //arxiv.org/abs/math/0401274 (2004).

[50] Porter (T.).— “Enriched categories and models for spaces of evolving states", Theoretical Computer Science 405, no. 1-2, p. 88Ð100 (2008). | MR | Zbl

[51] Porter (T.).— “The Crossed Menagerie: an introduction to crossed gadgetry and co-homology in algebra and topology", 2011, (available from the n-Lab, http: //ncatlab.org/nlab/show/Menagerie).

[52] Quigley (J. B.).— “Shape theory, Approaching and a Hurewicz theorem", Ph.D. Thesis, Indiana University (1970). | MR

[53] Quigley (J. B.).— “An exact sequence from the nth to the (n-1)-st fundamental group", Fund. Math. 77, no. 3, p. 195Ð210 (1973). | MR | Zbl

[54] Quigley (J. B.).— “Equivalence of fundamental and approaching groups of movable pointed compacta", Fund. Math. 91, no. 2, p. 73Ð83 (1976). | MR | Zbl

[55] Quillen (D. G.).— Homotopical algebra, Lecture Notes in Maths., no. 53, Springer-Verlag, (1967). | MR | Zbl

[56] Vogt (R.).— “Homotopy limits and colimits", Math. Z. 134, p. 11-52 (1973). | MR | Zbl

Cited by Sources: