Ceci est un petit papier de synthèse sur les connections entre les propriétés arithmétiques et géométriques dans le cas de groupes fuchsiens arithmétiques.
This is a small survey paper about connections between the arithmetic and geometric properties in the case of arithmetic Fuchsian groups.
@article{AFST_2014_6_23_5_1093_0, author = {Slavyana Geninska}, title = {On arithmetic {Fuchsian} groups and their characterizations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1093--1102}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 23}, number = {5}, year = {2014}, doi = {10.5802/afst.1437}, mrnumber = {3294603}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1437/} }
TY - JOUR AU - Slavyana Geninska TI - On arithmetic Fuchsian groups and their characterizations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2014 SP - 1093 EP - 1102 VL - 23 IS - 5 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1437/ DO - 10.5802/afst.1437 LA - en ID - AFST_2014_6_23_5_1093_0 ER -
%0 Journal Article %A Slavyana Geninska %T On arithmetic Fuchsian groups and their characterizations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2014 %P 1093-1102 %V 23 %N 5 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1437/ %R 10.5802/afst.1437 %G en %F AFST_2014_6_23_5_1093_0
Slavyana Geninska. On arithmetic Fuchsian groups and their characterizations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro Spécial : Aux croisements de la géométrie hyperbolique et de l’arithmétique, Tome 23 (2014) no. 5, pp. 1093-1102. doi : 10.5802/afst.1437. https://afst.centre-mersenne.org/articles/10.5802/afst.1437/
[1] Beardon (A.).— The Geometry of discrete groups, Graduate Texts in Mathematics 91, Springer-Verlag, New York (1995). | MR | Zbl
[2] Benoist (Y.).— Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7, p. 1-47 (1997). | MR | Zbl
[3] Cohen (P.) and Wolfart (J.).— Modular embeddings for some non-arithmetic Fuchsian groups, Acta Arith. 61, no. 1, p. 93-110 (1990). | MR | Zbl
[4] Corlette (K.).— Archimedean superrigidity and hyperbolic geometry, Ann. of Math. (2) 135, p. 165-182 (1992). | MR | Zbl
[5] Dal’Bo (F.) and Kim (I.).— A criterion of conjugacy for Zariski dense subgroups, C. R. Acad. Sci. Paris, t. 330 série I, p. 647-650 (2000). | MR | Zbl
[6] Deligne (P.) and Mostow (G. D.).— Monodromy of hypergeometric functions and nonlattice integral monodromy, Publ. Math. IHES 63, p. 5-89 (1986). | Numdam | MR | Zbl
[7] Geninska (S.) and Leuzinger (E.).— A geometric characterization of arithmetic Fuchsian groups, Duke Math. J. 142, p. 111-125 (2008). | MR | Zbl
[8] Geninska (S.).— The limit set of subgroups of arithmetic groups in , arXiv:1001.1720, to appear in Groups Geom. Dyn..
[9] Geninska (S.).— Examples of infinite covolume subgroups of with big limit sets, Math. Zeit. 272, p. 389-404 (2012). | MR | Zbl
[10] Gromov (M.) and Piatetski-Shapiro (I.).— Nonarithmetic groups in Lobachevsky spaces, Publ. Math. IHES 66, p. 93-103 (1988). | Numdam | MR | Zbl
[11] Gromov (M.) and Schoen (R.).— Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. Math. IHES 76, p. 165-246 (1992). | Numdam | MR | Zbl
[12] Kapovich (M.).— Arithmetic aspects of self-similar groups, Groups Geom. Dyn. 6, no. 4, p. 737-754 (2012). | MR | Zbl
[13] Katok (S.).— Fuchsian Groups, Chicago Lectures in Math., University of Chicago Press, Chicago (1992). | MR | Zbl
[14] Link (G.).— Geometry and Dynamics of Discrete Isometry Groups of Higher Rank Symmetric Spaces, Geometriae Dedicata 122, no 1, p. 51-75 (2006). | MR | Zbl
[15] Luo (W.) and Sarnak (P.).— Number variance for arithmetic hyperbolic surfaces, Comm. Math. Phys. 161, p. 419-432 (1994). | MR | Zbl
[16] Maclachlan (C.) and Reid (A.).— The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics 219, Springer-Verlag (2003). | MR | Zbl
[17] Margulis (G. A.).— Discrete subgroups of semisimple Lie groups, Springer-Verlag, Berlin (1991). | MR | Zbl
[18] Witte Morris (D.).— Introduction to Arithmetic Groups, preprint, http://arxiv.org/abs/math/0106063.
[19] Mostow (G. D.).— On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86, p. 171-276 (1980). | MR | Zbl
[20] Sarnak (P.).— Arithmetic quantum chaos, Israel Math. Conf. Proc. 8, p. 183-236 (1995). | MR | Zbl
[21] Schmutz (P.).— Arithmetic groups and the length spectrum of Riemann surfaces, Duke Math. J. 84, p. 199-215 (1996). | MR | Zbl
[22] Schmutz Schaller (P.).— Geometry of Riemann surfaces based on closed geodesics, Bull. Amer. Math. Soc. 35, p. 193-214 (1998). | MR | Zbl
[23] Schmutz Schaller (P.) and J. Wolfart.— Semi-arithmetic Fuchsian groups and modular embeddings, J. London Math. Soc. (2) 61, p. 13-24 (2000). | MR | Zbl
[24] Takeuchi (K.).— A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27, p. 600-612 (1975). | MR | Zbl
Cité par Sources :