In this paper we prove formality of the exterior algebra on endowed with the big bracket considered as a graded Poisson algebra. We also discuss connection of this result to bialgebra deformations of the symmetric algebra of considered as bialgebra.
On vérifie la formalité de l’algèbre exterieure de munie du grand crochet considérée comme une algèbre de Poisson graduée. On discute la pertinence de ce resultat pour les déformations de bigèbres d’une algèbre symétrique de considérée comme une bigèbre.
DOI: 10.5802/afst.1505
Vladimir Hinich 1; Dan Lemberg 1
@article{AFST_2016_6_25_2-3_569_0, author = {Vladimir Hinich and Dan Lemberg}, title = {Formality theorem and bialgebra deformations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {569--582}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 25}, number = {2-3}, year = {2016}, doi = {10.5802/afst.1505}, zbl = {1410.17018}, mrnumber = {3530169}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1505/} }
TY - JOUR AU - Vladimir Hinich AU - Dan Lemberg TI - Formality theorem and bialgebra deformations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2016 SP - 569 EP - 582 VL - 25 IS - 2-3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1505/ DO - 10.5802/afst.1505 LA - en ID - AFST_2016_6_25_2-3_569_0 ER -
%0 Journal Article %A Vladimir Hinich %A Dan Lemberg %T Formality theorem and bialgebra deformations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2016 %P 569-582 %V 25 %N 2-3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1505/ %R 10.5802/afst.1505 %G en %F AFST_2016_6_25_2-3_569_0
Vladimir Hinich; Dan Lemberg. Formality theorem and bialgebra deformations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 2-3, pp. 569-582. doi : 10.5802/afst.1505. https://afst.centre-mersenne.org/articles/10.5802/afst.1505/
[1] Cohen (F.).— Cohomology of braid spaces, Bulletin AMS, 79, p. 763-766 (1973). | DOI | MR | Zbl
[2] Crans (S.).— Quillen closed model structures for sheaves, JPAA, 101, p. 35-57 (1995). | DOI | MR | Zbl
[3] Drinfeld (V.).— Quasi-Hopf algebras, Leningrad Math. Journal, 1, p. 1419-1457 (1990). | MR | Zbl
[4] Getzler (E.), Jones (J.).— Operads, homotopy algebra and iterated integrals for double loop spaces, arXiv:hep-th/9403055.
[5] Gerstenhaber (M.), Schack (S.).— Bialgebra cohomology, deformations and quantum groups, Proceedings of NAS 87, p. 478-481 (1990). | DOI | MR | Zbl
[6] Hinich (V.).— Tamarkin’s proof of Kontsevich formality theorem, Forum Mathematicum, 15, p. 591-614 (2003). | DOI | MR | Zbl
[7] Hinich (V.), Lemberg (D.).— Noncommutative unfolding of hypersurface singularity, J. Noncommut. Geom. 8, no. 4, p. 1147-1169 (2014). | DOI | MR | Zbl
[8] Kontsevich (M.).— Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66, p. 157-216 (2003). | DOI | MR | Zbl
[9] Kosmann-Schwarzbach (Y.).— Grand crochet, crochets de Schouten et cohomologies d’algèbres de Lie, C. R. Acad. Sci. Paris Sér. I Math. 312, no. 1, p. 123-126 (1991). | MR | Zbl
[10] Lambrechts (P.), Volic (I.).— Formality of the little N-discs operad, Memoirs AMS, 230, no. 1079 (2014).
[11] Lurie (J.).— Higher algebra, manuscript available from the author’s homepage (http://www.math.harvard.edu/ lurie/).
[12] Lurie (J.).— Formal moduli problems (DAG X), manuscript available from the author’s homepage (http://www.math.harvard.edu/ lurie/).
[13] Lurie (J.).— Moduli problems for ring spectra, manuscript available from the author’s homepage (http://www.math.harvard.edu/ lurie/). | DOI | Zbl
[14] Lazarev (A.), Movshev (M.).— Deformations of Hopf algebras, Russian Math. Surveys, 4, p. 253-254 (1991). | DOI | MR | Zbl
[15] McClure (J.), Smith (J.).— A solution of Deligne’s Hochschild cohomology conjecture | DOI
[16] Merkulov (S.), Vallette (B.).— Deformation theory of representations of prop(erad)s. I. J. Reine Angew. Math., 634, p. 51-106 (2009). | DOI | MR | Zbl
[17] Schauenburg (P.).— Hopf modules and Yetter-Drinfeld modules, J. Algebra 169, p. 874-890 (1994). | DOI | Zbl
[18] Shoikhet (B.).— Tetramodules over a bialgebra form a 2-fold monoidal category, Appl. Categ. Structures, 21, p. 291-309 (2013). | DOI | MR | Zbl
[19] Shoikhet (B.).— Differential graded categories and Deligne conjecture, arXiv 1303.2500. | DOI
[20] Taillefer (R.).— Injective Hopf bimodules, cohomologies of infinite-dimensional Hopf algebras and graded commutativity of the Yoneda product, J. Algebra 276, p. 259-279 (2004). | DOI
[21] Tamarkin (D.).— Another proof of Kontsevich formality theorem, arXiv:math/9802... | DOI
Cited by Sources: