Formality theorem and bialgebra deformations
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 2-3, pp. 569-582.

In this paper we prove formality of the exterior algebra on VV * endowed with the big bracket considered as a graded Poisson algebra. We also discuss connection of this result to bialgebra deformations of the symmetric algebra of V considered as bialgebra.

On vérifie la formalité de l’algèbre exterieure de VV * munie du grand crochet considérée comme une algèbre de Poisson graduée. On discute la pertinence de ce resultat pour les déformations de bigèbres d’une algèbre symétrique de V considérée comme une bigèbre.

Published online:
DOI: 10.5802/afst.1505

Vladimir Hinich 1; Dan Lemberg 1

1 Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
@article{AFST_2016_6_25_2-3_569_0,
     author = {Vladimir Hinich and Dan Lemberg},
     title = {Formality theorem and bialgebra deformations},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {569--582},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 25},
     number = {2-3},
     year = {2016},
     doi = {10.5802/afst.1505},
     zbl = {1410.17018},
     mrnumber = {3530169},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1505/}
}
TY  - JOUR
AU  - Vladimir Hinich
AU  - Dan Lemberg
TI  - Formality theorem and bialgebra deformations
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2016
SP  - 569
EP  - 582
VL  - 25
IS  - 2-3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1505/
DO  - 10.5802/afst.1505
LA  - en
ID  - AFST_2016_6_25_2-3_569_0
ER  - 
%0 Journal Article
%A Vladimir Hinich
%A Dan Lemberg
%T Formality theorem and bialgebra deformations
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2016
%P 569-582
%V 25
%N 2-3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1505/
%R 10.5802/afst.1505
%G en
%F AFST_2016_6_25_2-3_569_0
Vladimir Hinich; Dan Lemberg. Formality theorem and bialgebra deformations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 2-3, pp. 569-582. doi : 10.5802/afst.1505. https://afst.centre-mersenne.org/articles/10.5802/afst.1505/

[1] Cohen (F.).— Cohomology of braid spaces, Bulletin AMS, 79, p. 763-766 (1973). | DOI | MR | Zbl

[2] Crans (S.).— Quillen closed model structures for sheaves, JPAA, 101, p. 35-57 (1995). | DOI | MR | Zbl

[3] Drinfeld (V.).— Quasi-Hopf algebras, Leningrad Math. Journal, 1, p. 1419-1457 (1990). | MR | Zbl

[4] Getzler (E.), Jones (J.).— Operads, homotopy algebra and iterated integrals for double loop spaces, arXiv:hep-th/9403055.

[5] Gerstenhaber (M.), Schack (S.).— Bialgebra cohomology, deformations and quantum groups, Proceedings of NAS 87, p. 478-481 (1990). | DOI | MR | Zbl

[6] Hinich (V.).— Tamarkin’s proof of Kontsevich formality theorem, Forum Mathematicum, 15, p. 591-614 (2003). | DOI | MR | Zbl

[7] Hinich (V.), Lemberg (D.).— Noncommutative unfolding of hypersurface singularity, J. Noncommut. Geom. 8, no. 4, p. 1147-1169 (2014). | DOI | MR | Zbl

[8] Kontsevich (M.).— Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66, p. 157-216 (2003). | DOI | MR | Zbl

[9] Kosmann-Schwarzbach (Y.).— Grand crochet, crochets de Schouten et cohomologies d’algèbres de Lie, C. R. Acad. Sci. Paris Sér. I Math. 312, no. 1, p. 123-126 (1991). | MR | Zbl

[10] Lambrechts (P.), Volic (I.).— Formality of the little N-discs operad, Memoirs AMS, 230, no. 1079 (2014).

[11] Lurie (J.).— Higher algebra, manuscript available from the author’s homepage (http://www.math.harvard.edu/ lurie/).

[12] Lurie (J.).— Formal moduli problems (DAG X), manuscript available from the author’s homepage (http://www.math.harvard.edu/ lurie/).

[13] Lurie (J.).— Moduli problems for ring spectra, manuscript available from the author’s homepage (http://www.math.harvard.edu/ lurie/). | DOI | Zbl

[14] Lazarev (A.), Movshev (M.).— Deformations of Hopf algebras, Russian Math. Surveys, 4, p. 253-254 (1991). | DOI | MR | Zbl

[15] McClure (J.), Smith (J.).— A solution of Deligne’s Hochschild cohomology conjecture | DOI

[16] Merkulov (S.), Vallette (B.).— Deformation theory of representations of prop(erad)s. I. J. Reine Angew. Math., 634, p. 51-106 (2009). | DOI | MR | Zbl

[17] Schauenburg (P.).— Hopf modules and Yetter-Drinfeld modules, J. Algebra 169, p. 874-890 (1994). | DOI | Zbl

[18] Shoikhet (B.).— Tetramodules over a bialgebra form a 2-fold monoidal category, Appl. Categ. Structures, 21, p. 291-309 (2013). | DOI | MR | Zbl

[19] Shoikhet (B.).— Differential graded categories and Deligne conjecture, arXiv 1303.2500. | DOI

[20] Taillefer (R.).— Injective Hopf bimodules, cohomologies of infinite-dimensional Hopf algebras and graded commutativity of the Yoneda product, J. Algebra 276, p. 259-279 (2004). | DOI

[21] Tamarkin (D.).— Another proof of Kontsevich formality theorem, arXiv:math/9802... | DOI

Cited by Sources: