We study random walks on the groups . We estimate the spectral gap in terms of the spectral gap of the projection to the linear part . This problem is motivated by an analogue in the group , which have application to smoothness of self-similar measures.
Nous étudions les marches aléatoires sur les groupes . Nous estimons le trou spectral en fonction du trou spectral de la projection sur la partie linéaire . Ce problème est motivé par son analogue dans le groupe , qui a des applications à la régularité des mesures auto-similaires.
DOI: 10.5802/afst.1518
Elon Lindenstrauss 1; Péter P. Varjú 2
@article{AFST_2016_6_25_5_969_0, author = {Elon Lindenstrauss and P\'eter P. Varj\'u}, title = {Spectral gap in the group of affine transformations over prime fields}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {969--993}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 25}, number = {5}, year = {2016}, doi = {10.5802/afst.1518}, zbl = {1384.60018}, mrnumber = {3582116}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1518/} }
TY - JOUR AU - Elon Lindenstrauss AU - Péter P. Varjú TI - Spectral gap in the group of affine transformations over prime fields JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2016 SP - 969 EP - 993 VL - 25 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1518/ DO - 10.5802/afst.1518 LA - en ID - AFST_2016_6_25_5_969_0 ER -
%0 Journal Article %A Elon Lindenstrauss %A Péter P. Varjú %T Spectral gap in the group of affine transformations over prime fields %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2016 %P 969-993 %V 25 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1518/ %R 10.5802/afst.1518 %G en %F AFST_2016_6_25_5_969_0
Elon Lindenstrauss; Péter P. Varjú. Spectral gap in the group of affine transformations over prime fields. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 25 (2016) no. 5, pp. 969-993. doi : 10.5802/afst.1518. https://afst.centre-mersenne.org/articles/10.5802/afst.1518/
[1] Bader (U.), Furman (A.), Gelander (T.), and Monod (N.).— Property and rigidity for actions on Banach spaces, Acta Math. 198, no. 1, p. 57-105 (2007). | DOI | MR | Zbl
[2] Bourgain (J.) and Gamburd (A.).— Uniform expansion bounds for Cayley graphs of , Ann. of Math. (2) 167, no. 2, p. 625-642 (2008). | DOI
[3] Bourgain (J.) and Gamburd (A.).— Expansion and random walks in . II, J. Eur. Math. Soc. (JEMS) 11, no. 5, p. 1057-1103 (2009). With an appendix by Bourgain. | DOI | MR | Zbl
[4] Breuillard (E.) and Gamburd (A.).— Strong uniform expansion in , Geom. Funct. Anal. 20, no. 5, p. 1201-1209 (2010). | DOI | MR | Zbl
[5] Breuillard (E.), Green (B.), and Tao (T.).— Approximate subgroups of linear groups, Geom. Funct. Anal. 21, no. 4, p. 774-819 (2011). | DOI | MR | Zbl
[6] Benyamini (Y.) and Lindenstrauss (J.).— Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. | DOI | Zbl
[7] Gowers (W. T.).— Quasirandom groups, Combin. Probab. Comput. 17, no. 3, p. 363-387 (2008). | DOI | MR | Zbl
[8] Helfgott (H. A.).— Growth and generation in , Ann. of Math. (2) 167, no. 2, p. 601-623 (2008). | DOI | MR | Zbl
[9] Helfgott (H. A.).— Growth in , J. Eur. Math. Soc. (JEMS) 13, no. 3, p. 761-851(2011). | DOI | Zbl
[10] Kowalski (E.).— Crible en expansion, Astérisque 348 (2012).
[11] Kowalski (E.).— Explicit growth and expansion for , Int. Math. Res. Not. IMRN 24, p. 5645-5708 (2013). | DOI | MR | Zbl
[12] Landazuri (V.) and Seitz (G. M.).— On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32, p. 418-443 (1974). | DOI | MR | Zbl
[13] Lubotzky (A.).— Expander graphs in pure and applied mathematics, Bull. Amer. Math. Soc. (N.S.) 49, no. 1, p. 113-162 (2012). | DOI | MR | Zbl
[14] Lindenstrauss (E.) and Varju (P. P.).— Spectral gap in the group of affine transformations over prime fields, arXiv preprint arXiv:1409.3564v1 (2014). 26pp. | DOI | MR
[15] Lindenstrauss (E.) and Varju (P. P.).— Random walks in the group of Euclidean isometries and self-similar measures. Duke Math. J. 165, no. 6, p. 1061-1127 (2016). | DOI | MR | Zbl
[16] Lindenstrauss (E.) and Varju (P. P.).— Lectures on dynamical aspects of arithmetic combinatorics. Work in progress.
[17] Lubotzky (A.) and Weiss (B.).— Groups and expanders, Expanding graphs (Princeton, NJ, 1992), p. 95-109 (1993). | DOI
[18] Nikolov (N.) and Pyber (L.).— Product decompositions of quasirandom groups and a Jordan type theorem, J. Eur. Math. Soc. (JEMS) 13, no. 4, p. 1063-1077 (2011). | DOI | MR | Zbl
[19] Pyber (L.) and Szabó (E.).— Growth in finite simple groups of Lie type of bounded rank (2010).
[20] Salehi Golsefidy (A.) and Varju (P. P.).— Expansion in perfect groups, Geom. Funct. Anal. 22, no. 6, p. 1832-1891 (2012). | DOI | MR | Zbl
[21] Sarnak (P.) and Xue (X. X.).— Bounds for multiplicities of automorphic representations, Duke Math. J. 64, no. 1, p. 207-227 (1991). (92h:22026) | DOI | MR | Zbl
[22] Tao (T.).— Product set estimates for non-commutative groups, Combinatorica 28, no. 5, p. 547-594 (2008). | DOI | MR | Zbl
[23] Varju (P. P.).— Expansion in , square-free, J. Eur. Math. Soc. (JEMS) 14, no. 1, p. 273-305 (2012). | DOI | Zbl
[24] Varju (P. P.).— Random walks in Euclidean space. Ann. of Math. (2), to appear. | DOI | MR | Zbl
Cited by Sources: