Nous étudions des enveloppes de métriques à courbure positive à singularités prescrites. En premier lieu, nous généralisons le travail de Berman dans ce contexte, nous prouvons la régularité de telles enveloppes, nous montrons que leur mesure de Monge–Ampère a pour support un certain « ensemble d’équilibre » et nous les relions aux asymptotiques de fonctions de Bergman partielles provenant d’idéaux multiplicateurs. Nous examinons comment ces enveloppes se comportent sur certains produits et leur relation avec la transformée de Legendre d’une courbe test de singularités psh dans le contexte des rayons géodésiques de l’espace des potentiels Kähler. Enfin, nous considérons la fonction d’exhaustion associée à ces ensembles d’équilibre, la reliant à la transformée de Legendre et à la géométrie du corps d’Okounkov.
We investigate envelopes of positive metrics with a prescribed singularity type. First we generalise work of Berman to this setting, proving regularity of such envelopes, showing their Monge–Ampère measure is supported on a certain “equilibrium set” and connecting with the asymptotics of the partial Bergman functions coming from multiplier ideals. We investigate how these envelopes behave on certain products, and how they relate to the Legendre transform of a test curve of singularity types in the context of geodesic rays in the space of Kähler potentials. Finally we consider the associated exhaustion function of these equilibrium sets, connecting it both to the Legendre transform and to the geometry of the Okounkov body.
Accepté le :
Publié le :
DOI : 10.5802/afst.1549
Julius Ross 1 ; David Witt Nyström 2
@article{AFST_2017_6_26_3_687_0, author = {Julius Ross and David Witt Nystr\"om}, title = {Envelopes of positive metrics with prescribed singularities}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {687--727}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {3}, year = {2017}, doi = {10.5802/afst.1549}, zbl = {1421.32032}, mrnumber = {3669969}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1549/} }
TY - JOUR AU - Julius Ross AU - David Witt Nyström TI - Envelopes of positive metrics with prescribed singularities JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 687 EP - 727 VL - 26 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1549/ DO - 10.5802/afst.1549 LA - en ID - AFST_2017_6_26_3_687_0 ER -
%0 Journal Article %A Julius Ross %A David Witt Nyström %T Envelopes of positive metrics with prescribed singularities %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 687-727 %V 26 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1549/ %R 10.5802/afst.1549 %G en %F AFST_2017_6_26_3_687_0
Julius Ross; David Witt Nyström. Envelopes of positive metrics with prescribed singularities. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 3, pp. 687-727. doi : 10.5802/afst.1549. https://afst.centre-mersenne.org/articles/10.5802/afst.1549/
[1] The Dirichlet problem for a complex Monge-Ampere equation, Invent. Math., Volume 37 (1976), pp. 1-44 | DOI | MR | Zbl
[2] The complex equilibrium measure of a symmetric convex set in , Trans. Am. Math. Soc., Volume 294 (1986), pp. 705-717 | MR | Zbl
[3] Bergman kernels and equilibrium measures for ample line bundles (2007) (http://arxiv.org/abs/0704.1640)
[4] Bergman kernels and equilibrium measures for line bundles over projective manifolds, Am. J. Math., Volume 131 (2009) no. 5, pp. 1485-1524 | DOI | MR | Zbl
[5] Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math., Volume 181 (2010) no. 2, pp. 337-394 | DOI | MR | Zbl
[6] Equilibrium measure of a product subset of , Proc. Am. Math. Soc., Volume 128 (2000) no. 12, pp. 3595-3599 | DOI | MR | Zbl
[7] Monge-Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl
[8] Valuations and Plurisubharmonic Singularities, Publ. Math. Inst. Hautes Étud. Sci., Volume 44 (2008) no. 2, pp. 449-494 | DOI | MR | Zbl
[9] Pluricomplex Green function, pluricomplex Poisson kernel and applications, Seminari di geometria. 2005–2009, Univ. Stud. Bologna, 2010, pp. 21-32 | MR | Zbl
[10] Weak Geodesic Rays in the Space of Kähler Metrics and the Class (To appear in J. Inst. Math. Jussieu.)
[11] Kiselman’s principle, the Dirichlet problem for the Monge-Ampère equation and rooftop obstacle problems, J. Math. Soc. Japan, Volume 68 (2016) no. 2, pp. 773-796 | DOI | Zbl
[12] Multiplier ideal sheaves and analytic methods in algebraic geometry, School on vanishing theorems and effective results in algebraic geometry. Lecture notes of the school held in Trieste, Italy, April 25–May 12, 2000 (ICTP Lect. Notes), Volume 6, Abdus Salam Int. Cent. Theoret. Phys., 2001, pp. 1-148 | MR | Zbl
[13] Transcendental methods in algebraic geometry, Lectures given at the 3rd session of the Centro Internazionale Matematico Estivo (CIME), Cetraro, Italy, July 4–12, 1994., Lecture Notes in Mathematics, 1646, Springer, 1996, 258 pages (Edited by F. Catanese and C. Ciliberto)
[14] Asymptotic invariants of base loci, Ann. Inst. Fourier, Volume 56 (2006) no. 6, pp. 1701-1734 | Numdam | MR | Zbl
[15] Complex Monge-Ampère Equations and Geodesics in the Space of Kähler Metrics (Vincent Guedj, ed.), Lecture Notes in Mathematics, 2038, Springer, 2012, viii+310 pages | Zbl
[16] The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482 | DOI | Zbl
[17] On the volume of graded linear series and Monge-Ampère mass, Math. Z., Volume 275 (2013) no. 1-2, pp. 233-243 | DOI | MR | Zbl
[18] Algebraic equations and convex bodies, Perspectives in analysis, geometry, and topology (Progr. Math.), Volume 296, Birkhäuser, 2012, pp. 263-282 | DOI | MR | Zbl
[19] Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009) no. 5, pp. 783-835 | DOI | Numdam | MR | Zbl
[20] The multiplier ideals of a sum of ideals, Trans. Am. Math. Soc., Volume 354 (2002) no. 1, pp. 205-217 | DOI | MR | Zbl
[21] The Monge-Ampère operator and geodesics in the space of Kähler potentials, Invent. Math., Volume 166 (2006) no. 1, pp. 125-149 | DOI | Zbl
[22] Regularity of geodesic rays and Monge-Ampere equations, Proc. Am. Math. Soc., Volume 138 (2010) no. 10, pp. 3637-3650 | DOI | MR | Zbl
[23] On the singularities of the pluricomplex Green’s function, Advances in analysis: the legacy of Elias M. Stein (Princeton Mathematical Series), Volume 50, Princeton Univ. Press, 2014, pp. 419-435 | DOI | MR | Zbl
[24] Bergman kernel on toric Kähler manifolds, University of Edinburgh, UK (2011) (Ph. D. Thesis)
[25] Toric partial density functions and stability of toric varieties (http://arxiv.org/abs/1111.5259) | Zbl
[26] Green functions with singularities along complex spaces, Int. J. Math., Volume 16 (2005) no. 4, pp. 333-355 | DOI | MR | Zbl
[27] Analytic test configurations and geodesic rays, J. Sympletic Geom., Volume 12 (2014) no. 1, pp. 125-169 | DOI | MR | Zbl
[28] Extremal plurisubharmonic functions in , Ann. Pol. Math., Volume 39 (1981), pp. 175-211 | DOI | MR | Zbl
Cité par Sources :