Dans cette note nous montrons l’éxistence d’un epimorphism entre les groupes des noeuds à deux ponts par un argument élémentaire en utilisant le polynôme de Riley. Comme corollaire, nous donnons une classification des noeuds à deux ponts par polynômes de Riley.
In this short note we show the existence of an epimorphism between groups of 2-bridge knots by means of an elementary argument using the Riley polynomial. As a corollary, we give a classification of 2-bridge knots by Riley polynomials.
Accepté le :
Publié le :
Mots clés : Riley polynomial, $2$-bridge knot, epimorphism
Teruaki Kitano 1 ; Takayuki Morifuji 2
@article{AFST_2017_6_26_5_1211_0, author = {Teruaki Kitano and Takayuki Morifuji}, title = {A note on {Riley} polynomials of 2-bridge knots}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1211--1217}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 26}, number = {5}, year = {2017}, doi = {10.5802/afst.1565}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1565/} }
TY - JOUR AU - Teruaki Kitano AU - Takayuki Morifuji TI - A note on Riley polynomials of 2-bridge knots JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2017 SP - 1211 EP - 1217 VL - 26 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1565/ DO - 10.5802/afst.1565 LA - en ID - AFST_2017_6_26_5_1211_0 ER -
%0 Journal Article %A Teruaki Kitano %A Takayuki Morifuji %T A note on Riley polynomials of 2-bridge knots %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2017 %P 1211-1217 %V 26 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1565/ %R 10.5802/afst.1565 %G en %F AFST_2017_6_26_5_1211_0
Teruaki Kitano; Takayuki Morifuji. A note on Riley polynomials of 2-bridge knots. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 5, pp. 1211-1217. doi : 10.5802/afst.1565. https://afst.centre-mersenne.org/articles/10.5802/afst.1565/
[1] Knots, De Gruyter Studies in Mathematics, 5, Walter de Gruyter, 2014, xiii+417 pages | Zbl
[2] Knots are determined by their complements, J. Am. Math. Soc., Volume 2 (1989) no. 2, pp. 371-415 | DOI | Zbl
[3] Homology invariants, Can. J. Math., Volume 30 (1978), pp. 655-670 | DOI | Zbl
[4] Residual finiteness for -manifolds, Combinatorial group theory and topology (Alta, Utah, 1984) (Annals of Mathematics Studies), Volume 111 (1987), pp. 379-396 | Zbl
[5] On isomorphic matrix representations of infinite groups, Rec. Math. Moscou, Volume 8 (1940), pp. 405-422 | Zbl
[6] Parabolic representations of knot groups, I, Proc. Lond. Math. Soc., Volume 24 (1972), pp. 217-242 | DOI | Zbl
[7] Epimorphisms between -bridge knot groups from the view point of Markoff maps, Intelligence of low dimensional topology 2006 (Hiroshima, Japan) (Series on Knots and Everything), Volume 40, World Scientific, 2007, pp. 279-286 | Zbl
[8] Über eine numerische Knoteninvariante, Math. Z., Volume 61 (1954), pp. 245-288 | DOI | Zbl
[9] The geometries of -manifolds, Bull. Lond. Math. Soc., Volume 15 (1983), pp. 401-487 | DOI | Zbl
[10] Three-dimensional geometry and topology. Vol 1., Princeton Mathematical Series, 35, Princeton University Press, 1997, x+311 pages | Zbl
Cité par Sources :