We study the action of the arithmetic Galois group on the geometric inertia subgroups of the fundamental group, in a tame but typically stacky context. The problem is analogous but more involved than the by now fairly well-understood situation of the procyclic inertia subgroups associated with the components of a divisor with normal crossings. A significant part of the text is devoted to introducing the necessary tools for a study which is in part motivated by and applied to the important example of the moduli stacks of curves, where the geometric inertia groups correspond to the automorphisms of algebraic curves of the type classified by the stack.
Nous étudions l’action du groupe de Galois arithmétique sur l’inertie géométrique attachée au groupe fondamental d’un (1-)champ algébrique, dans un contexte modéré. La situation est analogue mais aussi foncièrement distincte et plus complexe que celle, essentiellement bien comprise, qui concerne l’étude des groupes d’inertie procycliques associés aux composantes d’un diviseur à croisements normaux. Une grande partie du texte est consacrée à mettre en place les outils nécessaires à cette étude, elle-même en partie motivée par et appliquée à l’exemple important des champs de modules de courbes, dans lequel les groupes d’inertie en question correspondent aux automorphismes des courbes algébriques du type classifié par le champ.
Accepted:
Published online:
DOI: 10.5802/afst.1568
Pierre Lochak 1; Michel Vaquié 2
@article{AFST_2018_6_27_1_199_0, author = {Pierre Lochak and Michel Vaqui\'e}, title = {Groupe fondamental des champs alg\'ebriques, inertie et action galoisienne}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {199--264}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {6e s{\'e}rie, 27}, number = {1}, year = {2018}, doi = {10.5802/afst.1568}, zbl = {1423.14175}, language = {fr}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1568/} }
TY - JOUR AU - Pierre Lochak AU - Michel Vaquié TI - Groupe fondamental des champs algébriques, inertie et action galoisienne JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 199 EP - 264 VL - 27 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1568/ DO - 10.5802/afst.1568 LA - fr ID - AFST_2018_6_27_1_199_0 ER -
%0 Journal Article %A Pierre Lochak %A Michel Vaquié %T Groupe fondamental des champs algébriques, inertie et action galoisienne %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 199-264 %V 27 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1568/ %R 10.5802/afst.1568 %G fr %F AFST_2018_6_27_1_199_0
Pierre Lochak; Michel Vaquié. Groupe fondamental des champs algébriques, inertie et action galoisienne. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 1, pp. 199-264. doi : 10.5802/afst.1568. https://afst.centre-mersenne.org/articles/10.5802/afst.1568/
[1] Compactifying the space of stable maps, J. Am. Math. Soc., Volume 15 (2002) no. 1, pp. 27-75 | DOI | MR | Zbl
[2] Automorphism groups of genus 3 curves (Number Theory Seminar UAB-UB-UPC, Barcelona, January 2005, mat.uab.es/~francesc/mates/autgen3.pdf)
[3] Champs de Hurwitz, Mém. Soc. Math. Fr., 125–126, Société Mathématique de France, 2011, 219 pages | Numdam | Zbl
[4] Groupes et algèbres de Lie, Chapitre 5, Éléments de Mathematique, Masson, 1981 | Zbl
[5] Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1982, x+306 pages | Zbl
[6] Symmetries of Compact Riemann Surfaces, Lecture Notes in Mathematics, 2007, Springer, 2010, xx+158 pages | MR | Zbl
[7] Irreducibility of the space of cyclic covers of algebraic curves of fixed numerical type and the irreducible components of Sing, Advances in geometric analysis (Advanced Lectures in Mathematics), Volume 21, Higher Education Press, 2012, pp. 281-306 | Zbl
[8] Action of a Grothendieck-Teichmüller group on torsion elements of full Teichmüller modular groups of genus one, Int. J. Number Theory, Volume 8 (2012) no. 3, pp. 763-787 | DOI | MR | Zbl
[9] Action of the Grothendieck-Teichmüller group on torsion elements of full Teichmüller modular groups in genus zero, J. Théor. Nombres Bordx., Volume 24 (2012) no. 3, pp. 605-655 | DOI | Numdam | MR | Zbl
[10] On Galois action on stack inertia of moduli spaces of curves (2014) (https://arxiv.org/abs/1412.4644)
[11] Composantes irréductibles de lieux spéciaux d ?espaces de modules de courbes, action galoisienne en genre quelconque, Ann. Inst. Fourier, Volume 65 (2015) no. 1, pp. 245-276 | DOI | Zbl
[12] The Keel-Mori theorem via stacks (2005) (math.stanford.edu/~conrad/papers/coarsespace.pdf)
[13] Hurwitz families and arithmetic Galois groups, Duke Math. J., Volume 52 (1985), pp. 821-839 | DOI | MR | Zbl
[14] On the locus of curves with automorphisms, Ann. Mat. Pura Appl., Volume 149 (1987), pp. 135-151 | DOI | MR | Zbl
[15] On fields of moduli of curves, J. Algebra, Volume 211 (1999) no. 1, pp. 42-56 | DOI | MR | Zbl
[16] The irreducibility of the space of curves of given genus, Publ. Math., Inst. Hautes Étud. Sci., Volume 36 (1969), pp. 75-109 | DOI | Numdam | Zbl
[17] Surface symmetry I, Mich. Math. J., Volume 29 (1982), pp. 171-183 | DOI | MR | Zbl
[18] Riemann surfaces, Graduate Texts in Mathematics, 71, Springer, 1992, xvi+363 pages | Zbl
[19] Moduli of Riemann surfaces with symmetry, Discrete groups and geometry (London Mathematical Society Lecture Note Series), Volume 173, Cambridge University Press, 1992, pp. 75-93 | DOI | MR | Zbl
[20] Éléments de géométrie algébrique. I–IV, Publ. Math., Inst. Hautes Étud. Sci., Volume 4, 8, 11, 17, 20, 24, 28, 32 (1960–1967) (Rédigé avec la collaboration de Jean Dieudonné) | Zbl
[21] Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz loceaux et globeaux (SGA 2) (Alexander Grothendieck, ed.), Advanced Studies in Pure Mathematics, 2, North-Holland, 1968, 287 pages | Zbl
[22] Revêtements Etales et Groupe Fondamental (SGA 1) (Alexander Grothendieck, ed.), Lecture Notes in Mathematics, 224, Springer, 1971, xxii+447 pages | Zbl
[23] The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Lecture Notes in Mathematics, 208, Springer, 1971, viii+133 pages | MR | Zbl
[24] Quotients by groupoids, Ann. Math., Volume 145 (1997) no. 1, pp. 193-213 | DOI | MR | Zbl
[25] Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 39, Springer, 2000, xii+208 pages | Zbl
[26] On arithmetic curves in the moduli spaces of curves, J. Inst. Math. Jussieu, Volume 4 (2005) no. 3, pp. 443-508 | DOI | MR | Zbl
[27] Results and conjectures in profinite Teichmüller theory, Galois-Teichmüller theory and arithmetic geometry (Advanced Studies in Pure Mathematics), Volume 63, Mathematical Society of Japan, 2012, pp. 263-335 | DOI | Zbl
[28] Eigenloci of 5 points configurations on the Riemann sphere and the Grothendieck-Teichmüller group, Math. J. Okayama Univ., Volume 46 (2004), pp. 39-75 | Zbl
[29] The locus of curves with prescribed automorphism group, RIMS Kokyuroku, Volume 1267 (2002), pp. 112-141
[30] Mapping class group action versus Galois action on profinite fundamental groups, Am. J. Math., Volume 122 (2000) no. 5, pp. 1017-1026 | DOI | MR | Zbl
[31] Fundamental groups of algebraic stacks, M.I.T. (USA) (2000) (Ph. D. Thesis) | MR
[32] Fundamental groups of algebraic stacks, J. Inst. Math. Jussieu, Volume 3 (2004) no. 1, pp. 69-103 | DOI | MR | Zbl
[33] Altérations et groupe fondamental premier à , Bull. Soc. Math. Fr., Volume 131 (2003) no. 1, pp. 123-147 | DOI | Numdam | MR | Zbl
[34] Stratifikation von Quotientenmannigfaltigkeiten und insbesondere der Modulmannigfaltigkeiten für Kurven, J. Reine Angew. Math., Volume 250 (1971), pp. 12-41 | MR | Zbl
[35] Group actions on stacks and applications, Mich. Math. J., Volume 53 (2005) no. 1, pp. 209-236 | DOI | MR | Zbl
[36] Composantes connexes et irréductibles en familles, Manuscr. Math., Volume 136 (2011) no. 1-2, pp. 1-32 | DOI | MR | Zbl
[37] Special loci in moduli spaces of curves, Galois groups and fundamental groups (Mathematical Sciences Research Institute Publications), Volume 41, Cambridge University Press, 2003, pp. 217-275 | MR | Zbl
[38] Automorphisms of curves and their role in Grothendieck-Teichmüller theory, Math. Nachr., Volume 279 (2006) no. 5-6, pp. 656-671 | Zbl
[39] Corps locaux, Actualités Scientifiques et Industrielles, 1296, Hermann, 1962, 243 pages | Zbl
[40] Geometry and topology of three-manifolds (1979) (http://library.msri.org/books/gt3m/)
[41] Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., Volume 97 (1989) no. 3, 613.670 pages | DOI | MR | Zbl
[42] The fundamental group of an algebraic stack (2001) (https://arxiv.org/abs/math/0111071)
[43] Théorème de Van Kampen pour les champs algébriques, Ann. Math. Blaise Pascal, Volume 9 (2002) no. 1, pp. 101-145 | DOI | Numdam | MR | Zbl
Cited by Sources: