In this paper, we seek lower bounds of the dyadic Hilbert transform (Haar shift) of the form where and are two dyadic intervals and supported in . If , such bounds exist while in the other cases and such bounds are only available under additional constraints on the derivative of . In the later case, we establish a bound of the form where is the mean of over . This sheds new light on the similar problem for the usual Hilbert transform.
Dans cet article, nous établissons des bornes pour la transformée de Hilbert dyadique (Haar shift) de la forme où et sont des intervalles dyadiques et est à support dans . Si de telles bornes existent sans condition supplémentaire sur alors que dans les cas et une telle borne n’existe que si on impose une condition sur la dérivée de . Dans le dernier cas nous établissons une borne de la forme où est la moyenne de sur . Ce travail permet ainsi une meilleure compréhension du problème similaire pour la transformée de Hilbert sur .
Accepted:
Published online:
DOI: 10.5802/afst.1569
Keywords: Dyadic Hilbert transform, Haar Shift, BMO
Philippe Jaming 1; Elodie Pozzi 1; Brett D. Wick 2
@article{AFST_2018_6_27_1_265_0, author = {Philippe Jaming and Elodie Pozzi and Brett D. Wick}, title = {Lower bounds for the {Dyadic} {Hilbert} transform}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {265--284}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {1}, year = {2018}, doi = {10.5802/afst.1569}, zbl = {1400.42013}, mrnumber = {3771544}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1569/} }
TY - JOUR AU - Philippe Jaming AU - Elodie Pozzi AU - Brett D. Wick TI - Lower bounds for the Dyadic Hilbert transform JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 265 EP - 284 VL - 27 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1569/ DO - 10.5802/afst.1569 LA - en ID - AFST_2018_6_27_1_265_0 ER -
%0 Journal Article %A Philippe Jaming %A Elodie Pozzi %A Brett D. Wick %T Lower bounds for the Dyadic Hilbert transform %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 265-284 %V 27 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1569/ %R 10.5802/afst.1569 %G en %F AFST_2018_6_27_1_265_0
Philippe Jaming; Elodie Pozzi; Brett D. Wick. Lower bounds for the Dyadic Hilbert transform. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 1, pp. 265-284. doi : 10.5802/afst.1569. https://afst.centre-mersenne.org/articles/10.5802/afst.1569/
[1] Asymptotic analysis of the SVD of the truncated Hilbert transform with overlap, SIAM J. Math. Anal., Volume 47 (2015) no. 1, pp. 797-824 | DOI | MR
[2] Spectral analysis of the truncated Hilbert transform with overlap, SIAM J. Math. Anal., Volume 46 (2014) no. 1, pp. 192-213 | DOI | MR | Zbl
[3] Lower bounds for the truncated Hilbert transform, Rev. Mat. Iberoam., Volume 32 (2016) no. 1, pp. 23-56 | DOI | MR | Zbl
[4] Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, Series on Optimization, 6, SIAM, 2006, xii+634 pages | Zbl
[5] Solving the interior problem of computed tomography using a priori knowledge, Inverse Probl., Volume 24 (2008) no. 6 (Article ID 065001, 27 p.) | DOI | MR | Zbl
[6] Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, 78, Springer, 2008, xii+619 pages | MR | Zbl
[7] Truncated Hilbert transform and image reconstruction from limited tomographic data, Inverse Probl., Volume 22 (2006) no. 3, pp. 1037-1053 | DOI | MR | Zbl
[8] On Petermichl’s dyadic shift and the Hilbert transform, C. R. Math., Acad. Sci. Paris, Volume 346 (2008) no. 21–22, pp. 1133-1136 | DOI | MR | Zbl
[9] The sharp weighted bound for general Calderón-Zygmund operators, Ann. Math., Volume 175 (2012) no. 3, pp. 1473-1506 | DOI | Zbl
[10] Singular value decomposition for the truncated Hilbert transform, Inverse Probl., Volume 26 (201) no. 11 (Article ID 115011, 12 p.) | MR | Zbl
[11] Singular value decomposition for the truncated Hilbert transform. II., Inverse Probl., Volume 27 (2011) no. 7 (Article ID 075006, 7 p.) | DOI | MR | Zbl
[12] Stability of the interior problem with polynomial attenuation in the region of interest, Inverse Probl., Volume 28 (2012) no. 6 (Article ID 065022, 28 p.) | DOI | MR | Zbl
[13] Tiny a priori knowledge solves the interior problem in computed tomography, Phys. Med. Biol., Volume 53 (2008) no. 9, pp. 2207-2231 | DOI
[14] The mathematics of computerized tomography, Classics in Applied Mathematics, 32, SIAM, 2007, xvii+222 pages
[15] A Bellman function counterexample to the conjecture: the blow-up of the weak norm estimates of weighted singular operators (2015) (https://arxiv.org/abs/1506.04710)
[16] The Bellman function, the two-weight Hilbert transform, and embeddings of the model spaces , J. Anal. Math., Volume 87 (2002), pp. 385-414 | DOI | MR | Zbl
[17] Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R. Math., Acad. Sci. Paris, Volume 330 (2000) no. 6, pp. 455-460 | DOI | MR | Zbl
[18] The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical characteristic, Am. J. Math., Volume 129 (2007) no. 5, pp. 1355-1375 | DOI | MR | Zbl
[19] Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev., Volume 25 (1983), pp. 379-393 | DOI | MR | Zbl
[20] Integral Equations, Dover Books on Mathematics, Dover publications, 1985, iv+254 pages
[21] Exact interior reconstruction with cone-beam CT, International Journal of Biomedical Imaging, Volume 2007 (2007) (Article ID 10693, 5 p.) | DOI
Cited by Sources: