Lower bounds for the Dyadic Hilbert transform
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 1, pp. 265-284.

In this paper, we seek lower bounds of the dyadic Hilbert transform (Haar shift) of the form Шf L 2 (K) C(I,K)f L 2 (I) where I and K are two dyadic intervals and f supported in I. If IK, such bounds exist while in the other cases KI and KI= such bounds are only available under additional constraints on the derivative of f. In the later case, we establish a bound of the form Шf L 2 (K) C(I,K)|f I | where f I is the mean of f over I. This sheds new light on the similar problem for the usual Hilbert transform.

Dans cet article, nous établissons des bornes pour la transformée de Hilbert dyadique (Haar shift) de la forme Шf L 2 (K) C(I,K)f L 2 (I) I et K sont des intervalles dyadiques et f est à support dans I. Si IK de telles bornes existent sans condition supplémentaire sur f alors que dans les cas KI et KI= une telle borne n’existe que si on impose une condition sur la dérivée de f. Dans le dernier cas nous établissons une borne de la forme Шf L 2 (K) C(I,K)|f I |f I est la moyenne de f sur I. Ce travail permet ainsi une meilleure compréhension du problème similaire pour la transformée de Hilbert sur .

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1569
Classification: 42B20
Keywords: Dyadic Hilbert transform, Haar Shift, BMO

Philippe Jaming 1; Elodie Pozzi 1; Brett D. Wick 2

1 Univ. Bordeaux, IMB, CNRS UMR 5251, 33400 Talence, France
2 Department of Mathematics, Washington University – St. Louis, One Brookings Drive, St. Louis, MO 63130-4899, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2018_6_27_1_265_0,
     author = {Philippe Jaming and Elodie Pozzi and Brett D. Wick},
     title = {Lower bounds for the {Dyadic} {Hilbert} transform},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {265--284},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 27},
     number = {1},
     year = {2018},
     doi = {10.5802/afst.1569},
     zbl = {1400.42013},
     mrnumber = {3771544},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1569/}
}
TY  - JOUR
AU  - Philippe Jaming
AU  - Elodie Pozzi
AU  - Brett D. Wick
TI  - Lower bounds for the Dyadic Hilbert transform
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2018
SP  - 265
EP  - 284
VL  - 27
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1569/
DO  - 10.5802/afst.1569
LA  - en
ID  - AFST_2018_6_27_1_265_0
ER  - 
%0 Journal Article
%A Philippe Jaming
%A Elodie Pozzi
%A Brett D. Wick
%T Lower bounds for the Dyadic Hilbert transform
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2018
%P 265-284
%V 27
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1569/
%R 10.5802/afst.1569
%G en
%F AFST_2018_6_27_1_265_0
Philippe Jaming; Elodie Pozzi; Brett D. Wick. Lower bounds for the Dyadic Hilbert transform. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 1, pp. 265-284. doi : 10.5802/afst.1569. https://afst.centre-mersenne.org/articles/10.5802/afst.1569/

[1] Reema Al-Aifari; Michel Defrise; Alexander Katsevich Asymptotic analysis of the SVD of the truncated Hilbert transform with overlap, SIAM J. Math. Anal., Volume 47 (2015) no. 1, pp. 797-824 | DOI | MR

[2] Reema Al-Aifari; Alexander Katsevich Spectral analysis of the truncated Hilbert transform with overlap, SIAM J. Math. Anal., Volume 46 (2014) no. 1, pp. 192-213 | DOI | MR | Zbl

[3] Reema Al-Aifari; Lillian B. Pierce; Stefan Steinerberger Lower bounds for the truncated Hilbert transform, Rev. Mat. Iberoam., Volume 32 (2016) no. 1, pp. 23-56 | DOI | MR | Zbl

[4] Hedy Attouch; Giuseppe Buttazzo; Gérard Michaille Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, Series on Optimization, 6, SIAM, 2006, xii+634 pages | Zbl

[5] Matias Courdurier; Frédéric Noo; Michel Defrise; Hiroyuki Kudo Solving the interior problem of computed tomography using a priori knowledge, Inverse Probl., Volume 24 (2008) no. 6 (Article ID 065001, 27 p.) | DOI | MR | Zbl

[6] Bernard Dacorogna Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, 78, Springer, 2008, xii+619 pages | MR | Zbl

[7] Michel Defrise; Frédéric Noo; Rolf Clackdoyle; Hiroyuki Kudo Truncated Hilbert transform and image reconstruction from limited tomographic data, Inverse Probl., Volume 22 (2006) no. 3, pp. 1037-1053 | DOI | MR | Zbl

[8] Tuomas Hytönen On Petermichl’s dyadic shift and the Hilbert transform, C. R. Math., Acad. Sci. Paris, Volume 346 (2008) no. 21–22, pp. 1133-1136 | DOI | MR | Zbl

[9] Tuomas Hytönen The sharp weighted bound for general Calderón-Zygmund operators, Ann. Math., Volume 175 (2012) no. 3, pp. 1473-1506 | DOI | Zbl

[10] Alexander Katsevich Singular value decomposition for the truncated Hilbert transform, Inverse Probl., Volume 26 (201) no. 11 (Article ID 115011, 12 p.) | MR | Zbl

[11] Alexander Katsevich Singular value decomposition for the truncated Hilbert transform. II., Inverse Probl., Volume 27 (2011) no. 7 (Article ID 075006, 7 p.) | DOI | MR | Zbl

[12] E. Katsevich; Alexander Katsevich; Ge Wang Stability of the interior problem with polynomial attenuation in the region of interest, Inverse Probl., Volume 28 (2012) no. 6 (Article ID 065022, 28 p.) | DOI | MR | Zbl

[13] Hiroyuki Kudo; Matias Courdurier; Frédéric Noo; Michel Defrise Tiny a priori knowledge solves the interior problem in computed tomography, Phys. Med. Biol., Volume 53 (2008) no. 9, pp. 2207-2231 | DOI

[14] Frank Natterer The mathematics of computerized tomography, Classics in Applied Mathematics, 32, SIAM, 2007, xvii+222 pages

[15] Fedor Nazarov; Alexander Reznikov; Vasily Vasyunin; Alexander Volberg A Bellman function counterexample to the A 1 conjecture: the blow-up of the weak norm estimates of weighted singular operators (2015) (https://arxiv.org/abs/1506.04710)

[16] Fedor Nazarov; Alexander Volberg The Bellman function, the two-weight Hilbert transform, and embeddings of the model spaces K θ , J. Anal. Math., Volume 87 (2002), pp. 385-414 | DOI | MR | Zbl

[17] Stefanie Petermichl Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R. Math., Acad. Sci. Paris, Volume 330 (2000) no. 6, pp. 455-460 | DOI | MR | Zbl

[18] Stefanie Petermichl The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A p characteristic, Am. J. Math., Volume 129 (2007) no. 5, pp. 1355-1375 | DOI | MR | Zbl

[19] David Slepian Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev., Volume 25 (1983), pp. 379-393 | DOI | MR | Zbl

[20] Francesco G. Tricomi Integral Equations, Dover Books on Mathematics, Dover publications, 1985, iv+254 pages

[21] Yangbo Ye; Hengyong Yu; Ge Wang Exact interior reconstruction with cone-beam CT, International Journal of Biomedical Imaging, Volume 2007 (2007) (Article ID 10693, 5 p.) | DOI

Cited by Sources: