Dans cet article, nous établissons des bornes pour la transformée de Hilbert dyadique (Haar shift) de la forme où et sont des intervalles dyadiques et est à support dans . Si de telles bornes existent sans condition supplémentaire sur alors que dans les cas et une telle borne n’existe que si on impose une condition sur la dérivée de . Dans le dernier cas nous établissons une borne de la forme où est la moyenne de sur . Ce travail permet ainsi une meilleure compréhension du problème similaire pour la transformée de Hilbert sur .
In this paper, we seek lower bounds of the dyadic Hilbert transform (Haar shift) of the form where and are two dyadic intervals and supported in . If , such bounds exist while in the other cases and such bounds are only available under additional constraints on the derivative of . In the later case, we establish a bound of the form where is the mean of over . This sheds new light on the similar problem for the usual Hilbert transform.
Accepté le :
Publié le :
DOI : 10.5802/afst.1569
Mots-clés : Dyadic Hilbert transform, Haar Shift, BMO
Philippe Jaming 1 ; Elodie Pozzi 1 ; Brett D. Wick 2

@article{AFST_2018_6_27_1_265_0, author = {Philippe Jaming and Elodie Pozzi and Brett D. Wick}, title = {Lower bounds for the {Dyadic} {Hilbert} transform}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {265--284}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {1}, year = {2018}, doi = {10.5802/afst.1569}, zbl = {1400.42013}, mrnumber = {3771544}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1569/} }
TY - JOUR AU - Philippe Jaming AU - Elodie Pozzi AU - Brett D. Wick TI - Lower bounds for the Dyadic Hilbert transform JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 265 EP - 284 VL - 27 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1569/ DO - 10.5802/afst.1569 LA - en ID - AFST_2018_6_27_1_265_0 ER -
%0 Journal Article %A Philippe Jaming %A Elodie Pozzi %A Brett D. Wick %T Lower bounds for the Dyadic Hilbert transform %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 265-284 %V 27 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1569/ %R 10.5802/afst.1569 %G en %F AFST_2018_6_27_1_265_0
Philippe Jaming; Elodie Pozzi; Brett D. Wick. Lower bounds for the Dyadic Hilbert transform. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 1, pp. 265-284. doi : 10.5802/afst.1569. https://afst.centre-mersenne.org/articles/10.5802/afst.1569/
[1] Asymptotic analysis of the SVD of the truncated Hilbert transform with overlap, SIAM J. Math. Anal., Volume 47 (2015) no. 1, pp. 797-824 | DOI | MR
[2] Spectral analysis of the truncated Hilbert transform with overlap, SIAM J. Math. Anal., Volume 46 (2014) no. 1, pp. 192-213 | DOI | MR | Zbl
[3] Lower bounds for the truncated Hilbert transform, Rev. Mat. Iberoam., Volume 32 (2016) no. 1, pp. 23-56 | DOI | MR | Zbl
[4] Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, Series on Optimization, 6, SIAM, 2006, xii+634 pages | Zbl
[5] Solving the interior problem of computed tomography using a priori knowledge, Inverse Probl., Volume 24 (2008) no. 6 (Article ID 065001, 27 p.) | DOI | MR | Zbl
[6] Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, 78, Springer, 2008, xii+619 pages | MR | Zbl
[7] Truncated Hilbert transform and image reconstruction from limited tomographic data, Inverse Probl., Volume 22 (2006) no. 3, pp. 1037-1053 | DOI | MR | Zbl
[8] On Petermichl’s dyadic shift and the Hilbert transform, C. R. Math., Acad. Sci. Paris, Volume 346 (2008) no. 21–22, pp. 1133-1136 | DOI | MR | Zbl
[9] The sharp weighted bound for general Calderón-Zygmund operators, Ann. Math., Volume 175 (2012) no. 3, pp. 1473-1506 | DOI | Zbl
[10] Singular value decomposition for the truncated Hilbert transform, Inverse Probl., Volume 26 (201) no. 11 (Article ID 115011, 12 p.) | MR | Zbl
[11] Singular value decomposition for the truncated Hilbert transform. II., Inverse Probl., Volume 27 (2011) no. 7 (Article ID 075006, 7 p.) | DOI | MR | Zbl
[12] Stability of the interior problem with polynomial attenuation in the region of interest, Inverse Probl., Volume 28 (2012) no. 6 (Article ID 065022, 28 p.) | DOI | MR | Zbl
[13] Tiny a priori knowledge solves the interior problem in computed tomography, Phys. Med. Biol., Volume 53 (2008) no. 9, pp. 2207-2231 | DOI
[14] The mathematics of computerized tomography, Classics in Applied Mathematics, 32, SIAM, 2007, xvii+222 pages
[15] A Bellman function counterexample to the conjecture: the blow-up of the weak norm estimates of weighted singular operators (2015) (https://arxiv.org/abs/1506.04710)
[16] The Bellman function, the two-weight Hilbert transform, and embeddings of the model spaces , J. Anal. Math., Volume 87 (2002), pp. 385-414 | DOI | MR | Zbl
[17] Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R. Math., Acad. Sci. Paris, Volume 330 (2000) no. 6, pp. 455-460 | DOI | MR | Zbl
[18] The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical characteristic, Am. J. Math., Volume 129 (2007) no. 5, pp. 1355-1375 | DOI | MR | Zbl
[19] Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev., Volume 25 (1983), pp. 379-393 | DOI | MR | Zbl
[20] Integral Equations, Dover Books on Mathematics, Dover publications, 1985, iv+254 pages
[21] Exact interior reconstruction with cone-beam CT, International Journal of Biomedical Imaging, Volume 2007 (2007) (Article ID 10693, 5 p.) | DOI
Cité par Sources :