Dans ces notes, nous donnons un lien entre la dynamique complexe d’une famille de fractions rationnelles
In these notes, we present a connection between the complex dynamics of a family of rational functions
DOI : 10.5802/afst.1573
Laura De Marco 1

@article{AFST_2018_6_27_2_389_0, author = {Laura De Marco}, title = {Dynamical moduli spaces and elliptic curves}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {389--420}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {2}, year = {2018}, doi = {10.5802/afst.1573}, mrnumber = {3831028}, zbl = {1404.37047}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1573/} }
TY - JOUR AU - Laura De Marco TI - Dynamical moduli spaces and elliptic curves JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 389 EP - 420 VL - 27 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1573/ DO - 10.5802/afst.1573 LA - en ID - AFST_2018_6_27_2_389_0 ER -
%0 Journal Article %A Laura De Marco %T Dynamical moduli spaces and elliptic curves %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 389-420 %V 27 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1573/ %R 10.5802/afst.1573 %G en %F AFST_2018_6_27_2_389_0
Laura De Marco. Dynamical moduli spaces and elliptic curves. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro spécial à l’occasion de KAWA Komplex Analysis Winter school And workshop, 2014-2016, Tome 27 (2018) no. 2, pp. 389-420. doi : 10.5802/afst.1573. https://afst.centre-mersenne.org/articles/10.5802/afst.1573/
[1] Some typical properties of the dynamics of rational mappings, Usp. Mat. Nauk, Volume 38 (1983) no. 5, pp. 197-198 | MR | Zbl
[2] Complex analysis. An introduction to the theory of analytic functions of one complex variable, International Series in pure and applied Mathematics, McGraw-Hill Book Company, 1979, xiv+331 pages | Zbl
[3] Finitude des couples d’invariants modulaires singuliers sur une courbe algébrique plane non modulaire, J. Reine Angew. Math., Volume 505 (1998), pp. 203-208 | DOI | Zbl
[4] A finiteness theorem for canonical heights attached to rational maps over function fields, J. Reine Angew. Math., Volume 626 (2009), pp. 205-233 | MR | Zbl
[5] Preperiodic points and unlikely intersections, Duke Math. J., Volume 159 (2011) no. 1, pp. 1-29 | DOI | MR | Zbl
[6] Special curves and postcritically-finite polynomials, Forum Math. Pi, Volume 1 (2013), e3, 35 pages (Article ID e3, 35 p.) | MR | Zbl
[7] Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier, Volume 56 (2006) no. 3, pp. 625-688 | DOI | Numdam | MR | Zbl
[8] Bifurcation currents in holomorphic families of rational maps, Pluripotential theory (Lecture Notes in Math.), Volume 2075, Springer, 2013, pp. 1-93 | DOI | MR | Zbl
[9] The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math., Volume 160 (1988) no. 3-4, pp. 143-206 | DOI | MR | Zbl
[10] Canonical heights on varieties with morphisms, Compos. Math., Volume 89 (1993) no. 2, pp. 163-205 | Numdam | MR | Zbl
[11] Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl
[12] Primes of the form
[13] Bifurcation measures and quadratic rational maps, Proc. Lond. Math. Soc., Volume 111 (2015) no. 1, pp. 149-180 | DOI | MR | Zbl
[14] Torsion points and the Lattès family, Am. J. Math., Volume 138 (2016) no. 3, pp. 697-732 | DOI | Zbl
[15] Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett., Volume 8 (2001) no. 1-2, pp. 57-66 | DOI | MR | Zbl
[16] Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Volume 326 (2003) no. 1, pp. 43-73 | DOI | MR | Zbl
[17] Bifurcations, intersections, and heights, Algebra Number Theory, Volume 10 (2016) no. 5, pp. 1031-1056 | DOI | MR | Zbl
[18] A proof of Thurston’s topological characterization of rational functions, Acta Math., Volume 171 (1993) no. 2, pp. 263-297 | DOI | MR | Zbl
[19] The supports of higher bifurcation currents, Ann. Fac. Sci. Toulouse, Math., Volume 22 (2013) no. 3, pp. 445-464 | DOI | Numdam | MR | Zbl
[20] Bifurcation currents and equidistribution in parameter space, Frontiers in complex dynamics, Princeton University Press, 2014, pp. 515-566 | DOI | Zbl
[21] Distribution of rational maps with a preperiodic critical point, Am. J. Math., Volume 130 (2008) no. 4, pp. 979-1032 | DOI | MR | Zbl
[22] Classification of special curves in the space of cubic polynomials, Int. Math. Res. Not., Volume 2018 (2018) no. 2, pp. 362-411 | DOI | MR | Zbl
[23] Équidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann., Volume 335 (2006) no. 2, p. 311-36 corrigendum in ibid. 339 (2007), no. 4, p. 799-801 | DOI | Zbl
[24] Strong bifurcation loci of full Hausdorff dimension, Ann. Sci. Éc. Norm. Supér., Volume 45 (2012) no. 6, pp. 947-984 | DOI | Numdam | MR | Zbl
[25] Higher bifurcation currents, neutral cycles, and the Mandelbrot set, Indiana Univ. Math. J., Volume 63 (2014) no. 4, pp. 917-937 | DOI | MR | Zbl
[26] Preperiodic points for families of polynomials, Algebra Number Theory, Volume 7 (2013) no. 3, pp. 701-732 | DOI | MR | Zbl
[27] Preperiodic points for families of rational maps, Proc. Lond. Math. Soc., Volume 110 (2015) no. 2, pp. 395-427 | DOI | MR | Zbl
[28] The dynamical André-Oort conjecture: unicritical polynomials, Duke Math. J., Volume 166 (2017) no. 1, pp. 1-25 | DOI | Zbl
[29] A dynamical variant of the André-Oort conjecture, Int. Math. Res. Not., Volume 2018 (2018) no. 8, pp. 2447-2480 | DOI | Zbl
[30] On the dynamics of rational maps, Ann. Sci. Éc. Norm. Supér., Volume 16 (1983), pp. 193-217 | DOI | Numdam | MR | Zbl
[31] Torsion anomalous points and families of elliptic curves, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 9-10, pp. 491-494 | DOI | MR | Zbl
[32] Torsion anomalous points and families of elliptic curves, Am. J. Math., Volume 132 (2010) no. 6, pp. 1677-1691 | MR | Zbl
[33] Torsion points on families of squares of elliptic curves, Math. Ann., Volume 352 (2012) no. 2, pp. 453-484 | DOI | MR | Zbl
[34] Families of rational maps and iterative root-finding algorithms, Ann. Math., Volume 125 (1987), pp. 467-493 | DOI | MR | Zbl
[35] Complex Dynamics and Renormalization, Annals of Mathematics Studies, 135, Princeton University Press, 1995, vii+214 pages | Zbl
[36] Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math., Volume 135 (1998) no. 2, pp. 351-395 | Zbl
[37] Invariant varieties for polynomial dynamical systems, Ann. Math., Volume 179 (2014) no. 1, pp. 81-177 | MR | Zbl
[38] Geometry and dynamics of quadratic rational maps, Exp. Math., Volume 2 (1993) no. 1, pp. 37-83 | MR | Zbl
[39] Dynamics in One Complex Variable, Annals of Mathematics Studies, 160, Princeton University Press, 2006, viii+304 pages | MR | Zbl
[40] On Lattès maps, Dynamics on the Riemann sphere. A Bodil Branner Festschrift, European Mathematical Society, 2006, pp. 9-43 | Zbl
[41] O-minimality and the André-Oort conjecture for
[42] Courbes sur une variété abélienne et points de torsion, Invent. Math., Volume 71 (1983), pp. 207-233 | Zbl
[43] Sous-variétés d’une variété abélienne et points de torsion, Arithmetic and geometry, Vol. I: Arithmetic (Progress in Mathematics), Volume 35, Birkhäuser, 1983, pp. 327-352 | DOI | Zbl
[44] Prime and composite polynomials, Trans. Am. Math. Soc., Volume 23 (1922), pp. 51-66 | DOI | MR | Zbl
[45] Numdam
(personal communication) |[46] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994, xiii+525 pages | MR | Zbl
[47] The Arithmetic of Dynamical Systems, Graduate Texts in Mathematics, 241, Springer, 2007, ix+511 pages | MR | Zbl
[48] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009, xx+513 pages | MR | Zbl
[49] Moduli spaces and arithmetic dynamics, CRM Monograph Series, 30, American Mathematical Society, 2012, vii+140 pages | MR | Zbl
[50] Théorie du potentiel sur les courbes en géométrie analytique non archimedienne. Applications à la théorie d’Arakelov, Ph. D. Thesis, Université de Rennes 1 (France) (2005)
[51] A proof of the André-Oort conjecture for
[52] Big line bundles over arithmetic varieties, Invent. Math., Volume 173 (2008) no. 3, pp. 603-649 | DOI | MR | Zbl
[53] Some problems of unlikely intersections in arithmetic and geometry, Annals of Mathematics Studies, 181, Princeton University Press, 2012, xi+160 pages | MR | Zbl
- Post-critically finite maps on
for are sparse, Transactions of the American Mathematical Society, Volume 376 (2023) no. 5, pp. 3087-3109 | DOI:10.1090/tran/8871 | Zbl:1516.37146 - Chromatic zeros on hierarchical lattices and equidistribution on parameter space, Annales de l'Institut Henri Poincaré D. Combinatorics, Physics and their Interactions, Volume 8 (2021) no. 4, pp. 491-536 | DOI:10.4171/aihpd/109 | Zbl:1479.82009
- Cubic post-critically finite polynomials defined over
, ANTS XIV. Proceedings of the fourteenth algorithmic number theory symposium, Auckland, New Zealand, virtual event, June 29 – July 4, 2020, Berkeley, CA: Mathematical Sciences Publishers (MSP), 2020, pp. 23-38 | DOI:10.2140/obs.2020.4.23 | Zbl:1462.37110
Cité par 3 documents. Sources : zbMATH