We provide a general framework to study convergence properties of families of maps between manifolds which have distinct domains. For manifolds and where is equipped with a volume form we consider families of maps in the collection and we define a distance function similar to a generalized distance on such a collection. We show that the resulting metric space is always complete. We then shift our focus to exploring the convergence properties of families of such maps.
Nous présentons un cadre général pour l’étude de la convergence des familles d’applications entre variétés dont les domaines de définition sont distincts. Étant données deux variétés et , étant munie d’une forme volume, nous considérons des familles d’applications dans l’ensemble et nous définissons une distance sur cet ensemble, de type distance généralisée. Nous démontrons que l’espace métrique ainsi obtenu est toujours complet. Nous nous concentrons ensuite sur l’étude des propriétés de convergence de telles familles d’applications.
Accepted:
Published online:
DOI: 10.5802/afst.1577
Joseph Palmer 1
@article{AFST_2018_6_27_3_497_0, author = {Joseph Palmer}, title = {Metrics and convergence in moduli spaces of maps}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {497--526}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {3}, year = {2018}, doi = {10.5802/afst.1577}, mrnumber = {3869073}, zbl = {1404.58020}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1577/} }
TY - JOUR AU - Joseph Palmer TI - Metrics and convergence in moduli spaces of maps JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 497 EP - 526 VL - 27 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1577/ DO - 10.5802/afst.1577 LA - en ID - AFST_2018_6_27_3_497_0 ER -
%0 Journal Article %A Joseph Palmer %T Metrics and convergence in moduli spaces of maps %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 497-526 %V 27 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1577/ %R 10.5802/afst.1577 %G en %F AFST_2018_6_27_3_497_0
Joseph Palmer. Metrics and convergence in moduli spaces of maps. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 3, pp. 497-526. doi : 10.5802/afst.1577. https://afst.centre-mersenne.org/articles/10.5802/afst.1577/
[1] Topology of symplectomorphism groups of , Invent. Math., Volume 131 (1998) no. 1, pp. 1-24 | DOI | MR | Zbl
[2] Connectedness of spaces of symplectic embeddings, Int. Math. Res. Not., Volume 1996 (1996) no. 10, pp. 487-491 | DOI | MR | Zbl
[3] Methods of geometric analysis in extension and trace problems. Vol. 1, Monographs in Mathematics, 102, Birkhäuser, 2012, xxiii+560 pages | Zbl
[4] Real analysis. Modern techniques and their applications, Pure and Applied Mathematics, Wiley, 1999, xiv+386 pages | Zbl
[5] Pseudoholomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985), pp. 307-347 | DOI | Zbl
[6] Über den Begriff der vollständigen differentialgeometrischen Fläche, Comment. Math. Helv., Volume 3 (1931) no. 1, pp. 209-225 | DOI | Zbl
[7] Introduction to Smooth Manifolds, Graduate Texts in Mathematics, 2018, Springer, 2006, xvii+628 pages | Zbl
[8] Symplectic gluing along hypersurfaces and resolution of isolated orbifold singularities, Invent. Math., Volume 119 (1995) no. 1, pp. 129-154 | DOI | MR | Zbl
[9] On the volume elements on a manifold, Trans. Am. Math. Soc., Volume 120 (1965), pp. 286-294 | DOI | MR | Zbl
[10] The existence of complete Riemannian metrics, Proc. Am. Math. Soc., Volume 12 (1961) no. 6, pp. 889-891 | DOI | MR | Zbl
[11] Hofer’s question on intermediate symplectic capacities, Proc. Lond. Math. Soc., Volume 110 (2015) no. 4, pp. 787-804 | DOI | MR | Zbl
[12] Sharp symplectic embeddings of cylinders, Indag. Math., Volume 27 (2016) no. 1, pp. 307-317 | DOI | MR | Zbl
[13] Topology of spaces of equivariant symplectic embeddings, Proc. Am. Math. Soc., Volume 135 (2007) no. 1, pp. 277-288 | DOI | MR | Zbl
[14] Moduli spaces of toric manifolds, Geom. Dedicata, Volume 169 (2014), pp. 323-341 | DOI | MR | Zbl
[15] Lectures on Symplectic Geometry, Lecture Notes in Math., 1764, Springer, 2008 | MR | Zbl
[16] Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., Volume 36 (1934) no. 1, pp. 63-89 | DOI | MR | Zbl
Cited by Sources: