Nous présentons un cadre général pour l’étude de la convergence des familles d’applications entre variétés dont les domaines de définition sont distincts. Étant données deux variétés
We provide a general framework to study convergence properties of families of maps between manifolds which have distinct domains. For manifolds
Accepté le :
Publié le :
DOI : 10.5802/afst.1577
Joseph Palmer 1

@article{AFST_2018_6_27_3_497_0, author = {Joseph Palmer}, title = {Metrics and convergence in moduli spaces of maps}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {497--526}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {3}, year = {2018}, doi = {10.5802/afst.1577}, mrnumber = {3869073}, zbl = {1404.58020}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1577/} }
TY - JOUR AU - Joseph Palmer TI - Metrics and convergence in moduli spaces of maps JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 497 EP - 526 VL - 27 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1577/ DO - 10.5802/afst.1577 LA - en ID - AFST_2018_6_27_3_497_0 ER -
%0 Journal Article %A Joseph Palmer %T Metrics and convergence in moduli spaces of maps %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 497-526 %V 27 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1577/ %R 10.5802/afst.1577 %G en %F AFST_2018_6_27_3_497_0
Joseph Palmer. Metrics and convergence in moduli spaces of maps. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 3, pp. 497-526. doi : 10.5802/afst.1577. https://afst.centre-mersenne.org/articles/10.5802/afst.1577/
[1] Topology of symplectomorphism groups of
[2] Connectedness of spaces of symplectic embeddings, Int. Math. Res. Not., Volume 1996 (1996) no. 10, pp. 487-491 | DOI | MR | Zbl
[3] Methods of geometric analysis in extension and trace problems. Vol. 1, Monographs in Mathematics, 102, Birkhäuser, 2012, xxiii+560 pages | Zbl
[4] Real analysis. Modern techniques and their applications, Pure and Applied Mathematics, Wiley, 1999, xiv+386 pages | Zbl
[5] Pseudoholomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985), pp. 307-347 | DOI | Zbl
[6] Über den Begriff der vollständigen differentialgeometrischen Fläche, Comment. Math. Helv., Volume 3 (1931) no. 1, pp. 209-225 | DOI | Zbl
[7] Introduction to Smooth Manifolds, Graduate Texts in Mathematics, 2018, Springer, 2006, xvii+628 pages | Zbl
[8] Symplectic gluing along hypersurfaces and resolution of isolated orbifold singularities, Invent. Math., Volume 119 (1995) no. 1, pp. 129-154 | DOI | MR | Zbl
[9] On the volume elements on a manifold, Trans. Am. Math. Soc., Volume 120 (1965), pp. 286-294 | DOI | MR | Zbl
[10] The existence of complete Riemannian metrics, Proc. Am. Math. Soc., Volume 12 (1961) no. 6, pp. 889-891 | DOI | MR | Zbl
[11] Hofer’s question on intermediate symplectic capacities, Proc. Lond. Math. Soc., Volume 110 (2015) no. 4, pp. 787-804 | DOI | MR | Zbl
[12] Sharp symplectic embeddings of cylinders, Indag. Math., Volume 27 (2016) no. 1, pp. 307-317 | DOI | MR | Zbl
[13] Topology of spaces of equivariant symplectic embeddings, Proc. Am. Math. Soc., Volume 135 (2007) no. 1, pp. 277-288 | DOI | MR | Zbl
[14] Moduli spaces of toric manifolds, Geom. Dedicata, Volume 169 (2014), pp. 323-341 | DOI | MR | Zbl
[15] Lectures on Symplectic Geometry, Lecture Notes in Math., 1764, Springer, 2008 | MR | Zbl
[16] Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., Volume 36 (1934) no. 1, pp. 63-89 | DOI | MR | Zbl
Cité par Sources :