Sur deux contributions de Y. V. Egorov (1938–2018)
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 1, pp. 1-9.

The mathematician Yuri Egorov died on October 6, 2018 in Toulouse. This text outlines two fundamental aspects of his work, the quantification of canonical transformations and the study of subelliptic operators.

Le mathématicien Youri Egorov est décédé le 6 octobre 2018 à Toulouse. Ce texte expose deux aspects fondamentaux de son travail, la quantification des transformations canoniques et l’étude des opérateurs sous-elliptiques.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1591

Nicolas Lerner 1

1 Institut de Mathématiques de Jussieu, Sorbonne Université, Campus Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris cedex 05, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2019_6_28_1_1_0,
     author = {Nicolas Lerner},
     title = {Sur deux contributions de {Y.~V.~Egorov} (1938{\textendash}2018)},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1--9},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {6e s{\'e}rie, 28},
     number = {1},
     year = {2019},
     doi = {10.5802/afst.1591},
     zbl = {07052701},
     mrnumber = {3940790},
     language = {fr},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1591/}
}
TY  - JOUR
AU  - Nicolas Lerner
TI  - Sur deux contributions de Y. V. Egorov (1938–2018)
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2019
SP  - 1
EP  - 9
VL  - 28
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1591/
DO  - 10.5802/afst.1591
LA  - fr
ID  - AFST_2019_6_28_1_1_0
ER  - 
%0 Journal Article
%A Nicolas Lerner
%T Sur deux contributions de Y. V. Egorov (1938–2018)
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 1-9
%V 28
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1591/
%R 10.5802/afst.1591
%G fr
%F AFST_2019_6_28_1_1_0
Nicolas Lerner. Sur deux contributions de Y. V. Egorov (1938–2018). Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 1, pp. 1-9. doi : 10.5802/afst.1591. https://afst.centre-mersenne.org/articles/10.5802/afst.1591/

[1] Jean-Michel Bony Evolution equations and generalized Fourier integral operators, Advances in phase space analysis of partial differential equations (Progress in Nonlinear Differential Equations and their Applications), Volume 78, Birkhäuser, 2009, pp. 59-72 | DOI | MR | Zbl

[2] Johannes J. Duistermaat; Lars Hörmander Fourier integral operators. II, Acta Math., Volume 128 (1972) no. 3-4, pp. 183-269 | DOI | MR | Zbl

[3] Youri V. Egorov Subelliptic pseudodifferential operators, Dokl. Akad. Nauk SSSR, Volume 188 (1969), pp. 20-22 | MR | Zbl

[4] Youri V. Egorov Subelliptic operators, Usp. Mat. Nauk, Volume 30 (1975) no. 3, pp. 57-104 | MR | Zbl

[5] Charles Fefferman; Duong Hong Phong The uncertainty principle and sharp Gȧrding inequalities, Commun. Pure Appl. Math., Volume 34 (1981) no. 3, pp. 285-331 | DOI | Zbl

[6] Alain Grigis; Johannes Sjöstrand Microlocal analysis for differential operators. An introduction, London Mathematical Society Lecture Note Series, 196, Cambridge University Press, 1994, iv+151 pages | DOI | MR | Zbl

[7] Lars Hörmander Fourier integral operators. I, Acta Math., Volume 127 (1971) no. 1-2, pp. 79-183 | DOI | MR

[8] Lars Hörmander Subelliptic operators, Seminar on Singularities of Solutions of Linear Partial Differential Equations (Inst. Adv. Study, Princeton, N.J., 1977/78) (Annals of Mathematics Studies), Volume 91, Princeton University Press, 1979, pp. 127-208 | MR | Zbl

[9] Lars Hörmander The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Classics in Mathematics, Springer, 2003, x+440 pages | DOI | MR | Zbl

[10] Lars Hörmander The analysis of linear partial differential operators. IV. Fourier integral operators, Classics in Mathematics, Springer, 2009, viii+352 pages | DOI | MR | Zbl

[11] Nicolas Lerner Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators. Theory and Applications, 3, Birkhäuser, 2010, xii+397 pages | DOI | MR | Zbl

[12] Bernard Malgrange Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, 3, Oxford University Press, 1967, vii+106 pages | MR | Zbl

[13] Louis Nirenberg; François Trèves On local solvability of linear partial differential equations. I. Necessary conditions, Commun. Pure Appl. Math., Volume 23 (1970), pp. 1-38 | DOI | MR | Zbl

[14] Didier Robert Autour de l’approximation semi-classique, Progress in Mathematics, 68, Birkhäuser, 1987, x+329 pages | MR | Zbl

[15] François Trèves A new method of proof of the subelliptic estimates, Commun. Pure Appl. Math., Volume 24 (1971), pp. 71-115 | DOI | MR | Zbl

[16] François Trèves Introduction to pseudodifferential and Fourier integral operators. Vol. 2 Fourier integral operators, The University Series in Mathematics, Plenum Press, 1980, xiv+301–649+xi pages | MR | Zbl

[17] Maciej Zworski Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR | Zbl

Cited by Sources: