Shifted cotangent stacks are shifted symplectic
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 1, pp. 67-90.

On démontre que les champs cotangents décalés sont canoniquement munis d’une structure symplectique décalée. On démontre également que les champs conormaux décalés sont munis d’une structure Lagrangienne canonique. Ces résultats étaient attendus mais aucune démonstration n’était disponible dans le cas des champs d’Artin.

We prove that shifted cotangent stacks carry a canonical shifted symplectic structure. We also prove that shifted conormal stacks carry a canonical Lagrangian structure. These results were believed to be true, but no written proof was available in the Artin case.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1593

Damien Calaque 1

1 IMAG, Univ Montpellier, CNRS, Institut Universitaire de France, Montpellier, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2019_6_28_1_67_0,
     author = {Damien Calaque},
     title = {Shifted cotangent stacks are shifted symplectic},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {67--90},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 28},
     number = {1},
     year = {2019},
     doi = {10.5802/afst.1593},
     zbl = {1444.14004},
     mrnumber = {3940792},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1593/}
}
TY  - JOUR
AU  - Damien Calaque
TI  - Shifted cotangent stacks are shifted symplectic
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2019
SP  - 67
EP  - 90
VL  - 28
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1593/
DO  - 10.5802/afst.1593
LA  - en
ID  - AFST_2019_6_28_1_67_0
ER  - 
%0 Journal Article
%A Damien Calaque
%T Shifted cotangent stacks are shifted symplectic
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 67-90
%V 28
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1593/
%R 10.5802/afst.1593
%G en
%F AFST_2019_6_28_1_67_0
Damien Calaque. Shifted cotangent stacks are shifted symplectic. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 1, pp. 67-90. doi : 10.5802/afst.1593. https://afst.centre-mersenne.org/articles/10.5802/afst.1593/

[1] Damien Calaque Three lectures on derived symplectic geometry and topological field theories, Poisson 2012: Poisson Geometry in Mathematics and Physics (Indagationes Mathematicæ), Volume 25, Elsevier, 2014, pp. 926-947 | MR | Zbl

[2] Damien Calaque Lagrangian structures on mapping stacks and semi-classical TFTs, Stacks and Categories in Geometry, Topology, and Algebra (Tony Pantev, ed.) (Contemporary Mathematics), Volume 643, American Mathematical Society, 2015 | DOI | MR | Zbl

[3] Damien Calaque; Tony Pantev; Bertrand Toën; Michel Vaquié; Gabriele Vezzosi Shifted Poisson Structures and Deformation Quantization, J. Topol., Volume 10 (2017) no. 2, pp. 483-584 | DOI | MR | Zbl

[4] Dennis Gaitsgory; Nick Rozenblyum A study in derived algebraic geometry. Vol. II. Deformations, Lie theory and formal geometry, Mathematical Surveys and Monographs, 221, American Mathematical Society, Providence, RI, 2017 no. 2 | MR | Zbl

[5] Rune Haugseng Iterated spans and classical topological field theories, Math. Z., Volume 289 (2018) no. 3-4, pp. 1427-1488 | DOI | MR | Zbl

[6] Valerio Melani; Pavel Safronov Derived coisotropic structures II: stacks and quantization, Selecta Math. (N.S.), Volume 24 (2018) no. 4, pp. 3119-3173 | DOI | MR | Zbl

[7] Tony Pantev; Bertrand Toën; Michel Vaquié; Gabriele Vezzosi Shifted Symplectic Structures, Publications mathématiques de l’IHÉS, Volume 117 (2013) no. 1, pp. 271-328 | DOI | MR | Zbl

[8] J. P. Pridham Shifted Poisson and symplectic structures on derived N-stacks, J. Topol., Volume 10 (2017) no. 1, pp. 178-210 | DOI | MR | Zbl

[9] P. Safronov Quasi-Hamiltonian reduction via classical Chern–Simons theory, Adv. Math., Volume 287 (2016), pp. 733-773 | DOI | MR | Zbl

[10] Bertrand Toën Champs affines, Sel. Math., New Ser., Volume 12 (2006) no. 1, pp. 39-135 | DOI | MR | Zbl

[11] Bertrand Toën; Gabriele Vezzosi Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Amer. Math. Soc., Volume 193 (2008) no. 902, 224 pages | MR | Zbl

  • Kadri İlker Berktav Shifted Contact Structures and Their Local Theory, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 33 (2025) no. 4, p. 1019 | DOI:10.5802/afst.1795
  • Damien Calaque Derived Symplectic Geometry, Encyclopedia of Mathematical Physics (2025), p. 697 | DOI:10.1016/b978-0-323-95703-8.00009-4
  • Tasuki Kinjo An Introduction to Cohomological Donaldson–Thomas Theory, Moduli Spaces, Virtual Invariants and Shifted Symplectic Structures, Volume 4 (2025), p. 141 | DOI:10.1007/978-981-97-8249-9_5
  • Miquel Cueca; Jonas Schnitzer Deformations of Lagrangian NQ-submanifolds, Advances in Mathematics, Volume 458 (2024), p. 58 (Id/No 109952) | DOI:10.1016/j.aim.2024.109952 | Zbl:7940517
  • Tristan Bozec; Damien Calaque; Sarah Scherotzke Relative critical loci and quiver moduli, Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, Volume 57 (2024) no. 2, pp. 553-614 | DOI:10.24033/asens.2579 | Zbl:1541.14027
  • Yukinobu Toda Introduction, Categorical Donaldson-Thomas Theory for Local Surfaces, Volume 2350 (2024), p. 1 | DOI:10.1007/978-3-031-61705-8_1
  • Yukinobu Toda Categorical DT Theory for Local Surfaces, Categorical Donaldson-Thomas Theory for Local Surfaces, Volume 2350 (2024), p. 69 | DOI:10.1007/978-3-031-61705-8_3
  • Albin Grataloup A derived Lagrangian fibration on the derived critical locus, Journal of the Institute of Mathematics of Jussieu, Volume 23 (2024) no. 1, pp. 311-345 | DOI:10.1017/s147474802200041x | Zbl:1548.18030
  • Miquel Cueca; Chenchang Zhu Shifted symplectic higher Lie groupoids and classifying spaces, Advances in Mathematics, Volume 413 (2023), p. 64 (Id/No 108829) | DOI:10.1016/j.aim.2022.108829 | Zbl:1510.53094
  • Marco Benini; Pavel Safronov; Alexander Schenkel Classical BV formalism for group actions, Communications in Contemporary Mathematics, Volume 25 (2023) no. 1, p. 21 (Id/No 2150094) | DOI:10.1142/s0219199721500942 | Zbl:1521.81406
  • Yukinobu Toda Categorical Donaldson–Thomas Theory for Local Surfaces: ℤ/2-Periodic Version, International Mathematics Research Notices, Volume 2023 (2023) no. 13, p. 11172 | DOI:10.1093/imrn/rnac142
  • Pavel Safronov Shifted geometric quantization, Journal of Geometry and Physics, Volume 194 (2023), p. 34 (Id/No 104992) | DOI:10.1016/j.geomphys.2023.104992 | Zbl:1540.53108
  • Tasuki Kinjo Dimensional reduction in cohomological Donaldson-Thomas theory, Compositio Mathematica, Volume 158 (2022) no. 1, pp. 123-167 | DOI:10.1112/s0010437x21007740 | Zbl:1493.14096
  • Pavel Safronov Poisson-Lie structures as shifted Poisson structures, Advances in Mathematics, Volume 381 (2021), p. 69 (Id/No 107633) | DOI:10.1016/j.aim.2021.107633 | Zbl:1482.17052
  • Yuuji Tanaka; Richard P. Thomas Vafa-Witten invariants for projective surfaces. I: Stable case, Journal of Algebraic Geometry, Volume 29 (2020) no. 4, pp. 603-668 | DOI:10.1090/jag/738 | Zbl:1460.53027
  • J. P. Pridham Deformation quantisation for unshifted symplectic structures on derived Artin stacks, Selecta Mathematica. New Series, Volume 24 (2018) no. 4, pp. 3027-3059 | DOI:10.1007/s00029-018-0414-2 | Zbl:1423.14018

Cité par 16 documents. Sources : Crossref, zbMATH