We prove that a linear -dimensional Schrödinger equation on with harmonic potential and small -quasiperiodic potential
reduces to an autonomous system for most values of the frequency vector . As a consequence any solution of such a linear PDE is almost periodic in time and remains bounded in all Sobolev norms.
On montre que l’équation de Schrödinger -dimensionnelle avec potentiel harmonique , perturbée par un petit potentiel quasipériodique en temps
est réductible à un système autonome pour la plupart des valeurs du vecteur de fréquences . En conséquence, toute solution d’une telle EDP linéaire est presque-périodique en temps et toutes ses normes de Sobolev restent bornées.
Accepté le :
Publié le :
Benoît Grébert 1 ; Eric Paturel 1
CC-BY 4.0
@article{AFST_2019_6_28_5_977_0,
author = {Beno{\^\i}t Gr\'ebert and Eric Paturel},
title = {On reducibility of quantum harmonic oscillator on $\protect \mathbb{R}^d$ with quasiperiodic in time potential},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {977--1014},
year = {2019},
publisher = {Universit\'e Paul Sabatier, Toulouse},
volume = {Ser. 6, 28},
number = {5},
doi = {10.5802/afst.1619},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1619/}
}
TY - JOUR
AU - Benoît Grébert
AU - Eric Paturel
TI - On reducibility of quantum harmonic oscillator on $\protect \mathbb{R}^d$ with quasiperiodic in time potential
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2019
SP - 977
EP - 1014
VL - 28
IS - 5
PB - Université Paul Sabatier, Toulouse
UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1619/
DO - 10.5802/afst.1619
LA - en
ID - AFST_2019_6_28_5_977_0
ER -
%0 Journal Article
%A Benoît Grébert
%A Eric Paturel
%T On reducibility of quantum harmonic oscillator on $\protect \mathbb{R}^d$ with quasiperiodic in time potential
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2019
%P 977-1014
%V 28
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1619/
%R 10.5802/afst.1619
%G en
%F AFST_2019_6_28_5_977_0
Benoît Grébert; Eric Paturel. On reducibility of quantum harmonic oscillator on $\protect \mathbb{R}^d$ with quasiperiodic in time potential. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 5, pp. 977-1014. doi: 10.5802/afst.1619
[1] KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., Volume 359 (2014) no. 1-2, pp. 471-536 | DOI | Zbl | MR
[2] A Birkhoff normal form theorem for some semilinear PDEs, Hamiltonian dynamical systems and applications (NATO Science for Peace and Security Series B: Physics and Biophysics), Springer, 2008, pp. 213-247 | DOI | Zbl
[3] Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, II, Commun. Math. Phys., Volume 353 (2017) no. 1, pp. 353-378 | DOI | Zbl
[4] Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I, Trans. Am. Math. Soc., Volume 370 (2018) no. 3, pp. 1823-1865 | DOI | Zbl
[5] Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Commun. Math. Phys., Volume 219 (2001) no. 2, pp. 465-480 | DOI | Zbl
[6] Reducibility of the quantum harmonic oscillator in -dimensions with polynomial time-dependent perturbation, Anal. PDE, Volume 11 (2018) no. 3, pp. 775-799 | Zbl
[7] Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, Springer, 1976 | Zbl
[8] Methods of accelerated convergence in nonlinear mechanics, Hindustan Publishing Corp.; Springer, 1976 (Translated from the Russian by V. Kumar and edited by I. N. Sneddon)
[9] Long-time existence for small data nonlinear Klein–Gordon equations on tori and spheres, Int. Math. Res. Not., Volume 37 (2004), pp. 1897-1966 | DOI | Zbl | MR
[10] Almost reducibility of linear quasi-periodic systems, Smooth ergodic theory and its applications (Seattle, WA, 1999) (Proceedings of Symposia in Pure Mathematics), Volume 69, American Mathematical Society, 2001, pp. 679-705 | DOI | Zbl | MR
[11] On reducibility of Schrödinger equations with quasiperiodic in time potentials, Commun. Math. Phys., Volume 286 (2009) no. 1, pp. 125-135 | DOI | Zbl
[12] Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, J. Differ. Equations, Volume 259 (2015) no. 7, pp. 3389-3447 | DOI | Zbl
[13] Normal forms for semilinear quantum harmonic oscillators, Commun. Math. Phys., Volume 291 (2009) no. 3, pp. 763-798 | DOI | Zbl | MR
[14] KAM for the Klein Gordon equation on , Boll. Unione Mat. Ital., Volume 9 (2016) no. 2, pp. 237-288
[15] KAM for the quantum harmonic oscillator, Commun. Math. Phys., Volume 307 (2011) no. 2, pp. 383-427 | DOI | Zbl | MR
[16] Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, 112, Société Mathématique de France, 1984 (With an English summary) | Numdam | Zbl
[17] On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differ. Equations, Volume 98 (1992) no. 1, pp. 111-124 | DOI | Zbl | MR
[18] eigenfunction bounds for the Hermite operator, Duke Math. J., Volume 128 (2005) no. 2, pp. 369-392
[19] Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts, Astérisque, 259, Société Mathématique de France, 1999 | Numdam | Zbl | MR
[20] Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Mathematics, 1556, Springer, 1993 | Zbl | MR
[21] Convergent series expansions for quasi-periodic motions, Math. Ann., Volume 169 (1967), pp. 136-176 | DOI | Zbl | MR
[22] Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations, Commun. Math. Phys., Volume 277 (2008) no. 2, pp. 459-496 | DOI | Zbl | MR
Cité par Sources :