We prove that a linear -dimensional Schrödinger equation on with harmonic potential and small -quasiperiodic potential
reduces to an autonomous system for most values of the frequency vector . As a consequence any solution of such a linear PDE is almost periodic in time and remains bounded in all Sobolev norms.
On montre que l’équation de Schrödinger -dimensionnelle avec potentiel harmonique , perturbée par un petit potentiel quasipériodique en temps
est réductible à un système autonome pour la plupart des valeurs du vecteur de fréquences . En conséquence, toute solution d’une telle EDP linéaire est presque-périodique en temps et toutes ses normes de Sobolev restent bornées.
Accepted:
Published online:
DOI: 10.5802/afst.1619
Benoît Grébert 1; Eric Paturel 1
@article{AFST_2019_6_28_5_977_0, author = {Beno{\^\i}t Gr\'ebert and Eric Paturel}, title = {On reducibility of quantum harmonic oscillator on $\protect \mathbb{R}^d$ with quasiperiodic in time potential}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {977--1014}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {5}, year = {2019}, doi = {10.5802/afst.1619}, zbl = {1343.37075}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1619/} }
TY - JOUR AU - Benoît Grébert AU - Eric Paturel TI - On reducibility of quantum harmonic oscillator on $\protect \mathbb{R}^d$ with quasiperiodic in time potential JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 977 EP - 1014 VL - 28 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1619/ DO - 10.5802/afst.1619 LA - en ID - AFST_2019_6_28_5_977_0 ER -
%0 Journal Article %A Benoît Grébert %A Eric Paturel %T On reducibility of quantum harmonic oscillator on $\protect \mathbb{R}^d$ with quasiperiodic in time potential %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 977-1014 %V 28 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1619/ %R 10.5802/afst.1619 %G en %F AFST_2019_6_28_5_977_0
Benoît Grébert; Eric Paturel. On reducibility of quantum harmonic oscillator on $\protect \mathbb{R}^d$ with quasiperiodic in time potential. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 28 (2019) no. 5, pp. 977-1014. doi : 10.5802/afst.1619. https://afst.centre-mersenne.org/articles/10.5802/afst.1619/
[1] KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., Volume 359 (2014) no. 1-2, pp. 471-536 | DOI | MR | Zbl
[2] A Birkhoff normal form theorem for some semilinear PDEs, Hamiltonian dynamical systems and applications (NATO Science for Peace and Security Series B: Physics and Biophysics), Springer, 2008, pp. 213-247 | DOI | Zbl
[3] Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, II, Commun. Math. Phys., Volume 353 (2017) no. 1, pp. 353-378 | DOI | Zbl
[4] Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I, Trans. Am. Math. Soc., Volume 370 (2018) no. 3, pp. 1823-1865 | DOI | Zbl
[5] Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Commun. Math. Phys., Volume 219 (2001) no. 2, pp. 465-480 | DOI | Zbl
[6] Reducibility of the quantum harmonic oscillator in -dimensions with polynomial time-dependent perturbation, Anal. PDE, Volume 11 (2018) no. 3, pp. 775-799 | Zbl
[7] Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, Springer, 1976 | Zbl
[8] Methods of accelerated convergence in nonlinear mechanics, Hindustan Publishing Corp.; Springer, 1976 (Translated from the Russian by V. Kumar and edited by I. N. Sneddon)
[9] Long-time existence for small data nonlinear Klein–Gordon equations on tori and spheres, Int. Math. Res. Not., Volume 37 (2004), pp. 1897-1966 | DOI | MR | Zbl
[10] Almost reducibility of linear quasi-periodic systems, Smooth ergodic theory and its applications (Seattle, WA, 1999) (Proceedings of Symposia in Pure Mathematics), Volume 69, American Mathematical Society, 2001, pp. 679-705 | DOI | MR | Zbl
[11] On reducibility of Schrödinger equations with quasiperiodic in time potentials, Commun. Math. Phys., Volume 286 (2009) no. 1, pp. 125-135 | DOI | Zbl
[12] Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, J. Differ. Equations, Volume 259 (2015) no. 7, pp. 3389-3447 | DOI | Zbl
[13] Normal forms for semilinear quantum harmonic oscillators, Commun. Math. Phys., Volume 291 (2009) no. 3, pp. 763-798 | DOI | MR | Zbl
[14] KAM for the Klein Gordon equation on , Boll. Unione Mat. Ital., Volume 9 (2016) no. 2, pp. 237-288
[15] KAM for the quantum harmonic oscillator, Commun. Math. Phys., Volume 307 (2011) no. 2, pp. 383-427 | DOI | MR | Zbl
[16] Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, 112, Société Mathématique de France, 1984 (With an English summary) | Numdam | Zbl
[17] On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differ. Equations, Volume 98 (1992) no. 1, pp. 111-124 | DOI | MR | Zbl
[18] eigenfunction bounds for the Hermite operator, Duke Math. J., Volume 128 (2005) no. 2, pp. 369-392
[19] Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts, Astérisque, 259, Société Mathématique de France, 1999 | Numdam | MR | Zbl
[20] Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Mathematics, 1556, Springer, 1993 | MR | Zbl
[21] Convergent series expansions for quasi-periodic motions, Math. Ann., Volume 169 (1967), pp. 136-176 | DOI | MR | Zbl
[22] Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations, Commun. Math. Phys., Volume 277 (2008) no. 2, pp. 459-496 | DOI | MR | Zbl
Cited by Sources: