We present an alternative, short proof of a recent discrete version of the Brunn–Minkowski inequality due to Lehec and the second named author. Our proof also yields the four functions theorem of Ahlswede and Daykin as well as some new variants.
Diana Halikias 1; Bo’az Klartag 2; Boaz A. Slomka 3
@article{AFST_2021_6_30_2_267_0, author = {Diana Halikias and Bo{\textquoteright}az Klartag and Boaz A. Slomka}, title = {Discrete variants of {Brunn{\textendash}Minkowski} type inequalities}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {267--279}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {2}, year = {2021}, doi = {10.5802/afst.1674}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1674/} }
TY - JOUR AU - Diana Halikias AU - Bo’az Klartag AU - Boaz A. Slomka TI - Discrete variants of Brunn–Minkowski type inequalities JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 267 EP - 279 VL - 30 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1674/ DO - 10.5802/afst.1674 LA - en ID - AFST_2021_6_30_2_267_0 ER -
%0 Journal Article %A Diana Halikias %A Bo’az Klartag %A Boaz A. Slomka %T Discrete variants of Brunn–Minkowski type inequalities %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 267-279 %V 30 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1674/ %R 10.5802/afst.1674 %G en %F AFST_2021_6_30_2_267_0
Diana Halikias; Bo’az Klartag; Boaz A. Slomka. Discrete variants of Brunn–Minkowski type inequalities. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 2, pp. 267-279. doi : 10.5802/afst.1674. https://afst.centre-mersenne.org/articles/10.5802/afst.1674/
[1] An inequality for the weights of two families of sets, their unions and intersections, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 43 (1978) no. 3, pp. 183-185 | DOI | MR | Zbl
[2] Convex set functions in -space, Period. Math. Hung., Volume 6 (1975) no. 2, pp. 111-136 | DOI | MR | Zbl
[3] Some extensions of the Prékopa–Leindler inequality using Borell’s stochastic approach, Stud. Math., Volume 238 (2017) no. 3, pp. 201-233 | DOI | Zbl
[4] Transport proofs of some discrete variants of the Prékopa-Leindler inequality (2019) (https://arxiv.org/abs/1905.04038) | Zbl
[5] Percolation, Grundlehren der Mathematischen Wissenschaften, 321, Springer, 1999, xiv+444 pages | DOI | Zbl
[6] Probability on graphs, Institute of Mathematical Statistics Textbooks, 8, Cambridge University Press, 2018, xi+265 pages | DOI | MR | Zbl
[7] Brunn–Minkowski type inequalities for the lattice point enumerator, Adv. Math., Volume 370 (2020), 107193 | DOI | MR | Zbl
[8] Poisson processes and a log-concave Bernstein theorem, Stud. Math., Volume 247 (2019) no. 1, pp. 85-107 | DOI | MR | Zbl
[9] Contributions to the theory of convex bodies, Mich. Math. J., Volume 4 (1957), pp. 39-52 | MR | Zbl
[10] A curved Brunn–Minkowski inequality on the discrete hypercube, or: what is the Ricci curvature of the discrete hypercube?, SIAM J. Discrete Math., Volume 26 (2012) no. 3, pp. 983-996 | DOI | MR | Zbl
[11] The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, 94, Cambridge University Press, 1989, xvi+250 pages | DOI | MR | Zbl
Cited by Sources: