Discrete variants of Brunn–Minkowski type inequalities
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 2, pp. 267-279.

We present an alternative, short proof of a recent discrete version of the Brunn–Minkowski inequality due to Lehec and the second named author. Our proof also yields the four functions theorem of Ahlswede and Daykin as well as some new variants.

Published online:
DOI: 10.5802/afst.1674

Diana Halikias 1; Bo’az Klartag 2; Boaz A. Slomka 3

1 Department of Mathematics, Yale University, New Haven, CT 06511, USA
2 Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
3 Department of Mathematics, the Open University of Israel, Ra’anana 4353701, Israel
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2021_6_30_2_267_0,
     author = {Diana Halikias and Bo{\textquoteright}az Klartag and Boaz A. Slomka},
     title = {Discrete variants of {Brunn{\textendash}Minkowski} type inequalities},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {267--279},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {2},
     year = {2021},
     doi = {10.5802/afst.1674},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1674/}
}
TY  - JOUR
AU  - Diana Halikias
AU  - Bo’az Klartag
AU  - Boaz A. Slomka
TI  - Discrete variants of Brunn–Minkowski type inequalities
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 267
EP  - 279
VL  - 30
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1674/
DO  - 10.5802/afst.1674
LA  - en
ID  - AFST_2021_6_30_2_267_0
ER  - 
%0 Journal Article
%A Diana Halikias
%A Bo’az Klartag
%A Boaz A. Slomka
%T Discrete variants of Brunn–Minkowski type inequalities
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 267-279
%V 30
%N 2
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1674/
%R 10.5802/afst.1674
%G en
%F AFST_2021_6_30_2_267_0
Diana Halikias; Bo’az Klartag; Boaz A. Slomka. Discrete variants of Brunn–Minkowski type inequalities. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 2, pp. 267-279. doi : 10.5802/afst.1674. https://afst.centre-mersenne.org/articles/10.5802/afst.1674/

[1] Rudolf Ahlswede; David E. Daykin An inequality for the weights of two families of sets, their unions and intersections, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 43 (1978) no. 3, pp. 183-185 | DOI | MR | Zbl

[2] Christer Borell Convex set functions in d-space, Period. Math. Hung., Volume 6 (1975) no. 2, pp. 111-136 | DOI | MR | Zbl

[3] Dario Cordero-Erausquin; Bernard Maurey Some extensions of the Prékopa–Leindler inequality using Borell’s stochastic approach, Stud. Math., Volume 238 (2017) no. 3, pp. 201-233 | DOI | Zbl

[4] Nathael Gozlan; Cyril Roberto; Paul-Marie Samson; Prasad Tetali Transport proofs of some discrete variants of the Prékopa-Leindler inequality (2019) (https://arxiv.org/abs/1905.04038) | Zbl

[5] Geoffrey Grimmett Percolation, Grundlehren der Mathematischen Wissenschaften, 321, Springer, 1999, xiv+444 pages | DOI | Zbl

[6] Geoffrey Grimmett Probability on graphs, Institute of Mathematical Statistics Textbooks, 8, Cambridge University Press, 2018, xi+265 pages | DOI | MR | Zbl

[7] David Iglesias; Jesús Yepes Nicholás; Artem Zvavitch Brunn–Minkowski type inequalities for the lattice point enumerator, Adv. Math., Volume 370 (2020), 107193 | DOI | MR | Zbl

[8] Bo’az Klartag; Joseph Lehec Poisson processes and a log-concave Bernstein theorem, Stud. Math., Volume 247 (2019) no. 1, pp. 85-107 | DOI | MR | Zbl

[9] Herbert Knothe Contributions to the theory of convex bodies, Mich. Math. J., Volume 4 (1957), pp. 39-52 | MR | Zbl

[10] Yann Ollivier; Cédric Villani A curved Brunn–Minkowski inequality on the discrete hypercube, or: what is the Ricci curvature of the discrete hypercube?, SIAM J. Discrete Math., Volume 26 (2012) no. 3, pp. 983-996 | DOI | MR | Zbl

[11] Gilles Pisier The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, 94, Cambridge University Press, 1989, xvi+250 pages | DOI | MR | Zbl

Cited by Sources: