Exponential rate for the contact process extinction time
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 503-526.

We consider the extinction time of the contact process on increasing sequences of finite graphs obtained from a variety of random graph models. Under the assumption that the infection rate is above the critical value for the process on the integer line, in each case we prove that the logarithm of the extinction time divided by the size of the graph converges in probability to a (model-dependent) positive constant. The graphs we treat include various percolation models on increasing boxes of  d or  d in their supercritical or percolative regimes (Bernoulli bond and site percolation, the occupied and vacant sets of random interlacements, excursion sets of the Gaussian free field, random geometric graphs) as well as supercritical Galton–Watson trees grown up to finite generations.

Nous étudions le temps d’extinction du processus de contact sur des suites de graphes finis, issus de familles de graphes aléatoires classiques. Sous l’hypothèse d’un taux d’infection supérieur à sa valeur critique sur , nous montrons que le logarithme du temps d’extinction divisé par la taille du graphe converge en probabilité vers une constante positive (dépendant du modèle considéré). La famille de graphes considérés inclut divers modèles de percolation, en régime surcritique, sur des sous-boîtes croissantes de d ou d (percolation de Bernoulli par site ou par arête, ensemble des entrelacs aléatoires et son complémentaire, ensemble d’excursions du champ libre gaussien, graphe aléatoire géométrique), ainsi que les arbres de Galton–Watson surcritiques tronqués à une hauteur finie.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1683

Bruno Schapira 1; Daniel Valesin 2

1 Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France
2 University of Groningen, Nijenborgh 9, 9747 AG Groningen The Netherlands
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2021_6_30_3_503_0,
     author = {Bruno Schapira and Daniel Valesin},
     title = {Exponential rate for the contact process extinction time},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {503--526},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {3},
     year = {2021},
     doi = {10.5802/afst.1683},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1683/}
}
TY  - JOUR
AU  - Bruno Schapira
AU  - Daniel Valesin
TI  - Exponential rate for the contact process extinction time
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 503
EP  - 526
VL  - 30
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1683/
DO  - 10.5802/afst.1683
LA  - en
ID  - AFST_2021_6_30_3_503_0
ER  - 
%0 Journal Article
%A Bruno Schapira
%A Daniel Valesin
%T Exponential rate for the contact process extinction time
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 503-526
%V 30
%N 3
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1683/
%R 10.5802/afst.1683
%G en
%F AFST_2021_6_30_3_503_0
Bruno Schapira; Daniel Valesin. Exponential rate for the contact process extinction time. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 503-526. doi : 10.5802/afst.1683. https://afst.centre-mersenne.org/articles/10.5802/afst.1683/

[1] Krishna B. Athreya; Peter E. Ney Branching processes, 2004 (Courier Corporation) | Zbl

[2] Daniela Bertacchi; Nicolas Lanchier; Fabio Zucca Contact and voter processes on the infinite percolation cluster as models of host-symbiont interactions, Ann. Appl. Probab., Volume 21 (2011) no. 4, pp. 1215-1252 | MR | Zbl

[3] Andrew Beveridge; Andrzej Dudek; Alan Frieze; Tobias Müller; Miloš Stojaković Maker-breaker games on random geometric graphs, Random Struct. Algorithms, Volume 45 (2014) no. 4, pp. 553-607 | DOI | MR | Zbl

[4] Jean Bricmont; Joel L. Lebowitz; Christian Maes Percolation in strongly correlated systems: the massless Gaussian field, J. Stat. Phys., Volume 48 (1987) no. 5-6, pp. 1249-1268 | DOI | MR | Zbl

[5] Van Hao Can Super-exponential extinction time of the contact process on random geometric graphs, Comb. Probab. Comput., Volume 27 (2018) no. 2, pp. 162-185 | DOI | MR | Zbl

[6] Jiří Černý; Augusto Q. Teixeira From random walk trajectories to random interlacements, Ensaios Matemáticos, 23, Sociedade Brasileira de Matemática, 2012, ii+78 pages | MR | Zbl

[7] Xinxing Chen; Qiang Yao The complete convergence theorem holds for contact processes on open clusters of d × + , J. Stat. Phys., Volume 135 (2009) no. 4, pp. 651-680 | DOI | MR | Zbl

[8] Olivier Couronné; Reda Jürg Messikh Surface order large deviations for 2D FK-percolation and Potts models, Stochastic Processes Appl., Volume 113 (2004) no. 1, pp. 81-99 | DOI | MR | Zbl

[9] Michael Cranston; Thomas Mountford; Jean-Christophe Mourrat; Daniel Valesin The contact process on finite homogeneous trees revisited, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 11 (2014) no. 1, pp. 385-408 | MR | Zbl

[10] Alexander Drewitz; Balázs Ráth; Artëm Sapozhnikov An introduction to random interlacements, SpringerBriefs in Mathematics, Springer, 2014, x+120 pages | Zbl

[11] Alexander Drewitz; Balázs Ráth; Artëm Sapozhnikov On chemical distances and shape theorems in percolation models with long-range correlations, J. Math. Phys., Volume 55 (2014) no. 8, 083307, 30 pages | MR | Zbl

[12] Richard Durrett; Roberto H. Schonmann The contact process on a finite set. II, Ann. Probab., Volume 16 (1988) no. 4, pp. 1570-1583 | MR | Zbl

[13] Geoffrey Grimmett Percolation, Grundlehren der Mathematischen Wissenschaften, 321, Springer, 1999, xiv+444 pages | Zbl

[14] Gregory F. Lawler; Vlada Limic Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, 123, Cambridge University Press, 2010, xii+364 pages | MR | Zbl

[15] Thomas M. Liggett Stochastic interacting systems: contact, voter and exclusion processes, Grundlehren der Mathematischen Wissenschaften, 324, Springer, 1999, xii+332 pages | MR | Zbl

[16] Laurent Ménard; Arvind Singh Percolation by cumulative merging and phase transition for the contact process on random graphs, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 5, pp. 1189-1238 | DOI | MR | Zbl

[17] Thomas Mountford Existence of a constant for finite system extinction, J. Stat. Phys., Volume 96 (1999) no. 5-6, pp. 1331-1341 | DOI | MR | Zbl

[18] Thomas Mountford; Jean-Christophe Mourrat; Daniel Valesin; Qiang Yao Exponential extinction time of the contact process on finite graphs, Stochastic Processes Appl., Volume 126 (2016) no. 7, pp. 1974-2013 | DOI | MR | Zbl

[19] Robin Pemantle The contact process on trees, Ann. Probab., Volume 20 (1992) no. 4, pp. 2089-2116 | MR | Zbl

[20] Mathew Penrose Random geometric graphs, Oxford Studies in Probability, 5, Oxford University Press, 2003, xiv+330 pages | MR | Zbl

[21] Agoston Pisztora Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Relat. Fields, Volume 104 (1996) no. 4, pp. 427-466 | DOI | MR | Zbl

[22] Serguei Popov; Balázs Ráth On decoupling inequalities and percolation of excursion sets of the Gaussian free field, J. Stat. Phys., Volume 159 (2015) no. 2, pp. 312-320 | DOI | MR | Zbl

[23] Balázs Ráth A short proof of the phase transition for the vacant set of random interlacements, Electron. Commun. Probab., Volume 20 (2015), 3, 11 pages | MR | Zbl

[24] Balázs Ráth; Artëm Sapozhnikov On the transience of random interlacements, Electron. Commun. Probab., Volume 16 (2011), pp. 379-391 | MR | Zbl

[25] Pierre-François Rodriguez; Alain-Sol Sznitman Phase transition and level-set percolation for the Gaussian free field, Commun. Math. Phys., Volume 320 (2013) no. 2, pp. 571-601 | DOI | MR | Zbl

[26] Artëm Sapozhnikov Random walks on infinite percolation clusters in models with long-range correlations, Ann. Probab., Volume 45 (2017) no. 3, pp. 1842-1898 | MR | Zbl

[27] Bruno Schapira; Daniel Valesin Extinction time for the contact process on general graphs, Probab. Theory Relat. Fields, Volume 169 (2017) no. 3-4, pp. 871-899 | DOI | MR | Zbl

[28] Vladas Sidoravicius; Alain-Sol Sznitman Percolation for the vacant set of random interlacements, Commun. Pure Appl. Math., Volume 62 (2009) no. 6, pp. 831-858 | DOI | MR | Zbl

[29] Alain-Sol Sznitman Vacant set of random interlacements and percolation, Ann. Math., Volume 171 (2010) no. 3, pp. 2039-2087 | DOI | MR | Zbl

[30] Alain-Sol Sznitman Disconnection and level-set percolation for the Gaussian free field, J. Math. Soc. Japan, Volume 67 (2015) no. 4, pp. 1801-1843 | MR | Zbl

[31] Augusto Q. Teixeira On the uniqueness of the infinite cluster of the vacant set of random interlacements, Ann. Appl. Probab., Volume 19 (2009) no. 1, pp. 454-466 | MR | Zbl

[32] Augusto Q. Teixeira On the size of a finite vacant cluster of random interlacements with small intensity, Probab. Theory Relat. Fields, Volume 150 (2011) no. 3-4, pp. 529-574 | DOI | MR | Zbl

[33] Xiaofeng Xue Critical value for contact processes on clusters of oriented bond percolation, Physica A, Volume 448 (2016), pp. 205-215 | MR | Zbl

Cited by Sources: