We consider the extinction time of the contact process on increasing sequences of finite graphs obtained from a variety of random graph models. Under the assumption that the infection rate is above the critical value for the process on the integer line, in each case we prove that the logarithm of the extinction time divided by the size of the graph converges in probability to a (model-dependent) positive constant. The graphs we treat include various percolation models on increasing boxes of or in their supercritical or percolative regimes (Bernoulli bond and site percolation, the occupied and vacant sets of random interlacements, excursion sets of the Gaussian free field, random geometric graphs) as well as supercritical Galton–Watson trees grown up to finite generations.
Nous étudions le temps d’extinction du processus de contact sur des suites de graphes finis, issus de familles de graphes aléatoires classiques. Sous l’hypothèse d’un taux d’infection supérieur à sa valeur critique sur , nous montrons que le logarithme du temps d’extinction divisé par la taille du graphe converge en probabilité vers une constante positive (dépendant du modèle considéré). La famille de graphes considérés inclut divers modèles de percolation, en régime surcritique, sur des sous-boîtes croissantes de ou (percolation de Bernoulli par site ou par arête, ensemble des entrelacs aléatoires et son complémentaire, ensemble d’excursions du champ libre gaussien, graphe aléatoire géométrique), ainsi que les arbres de Galton–Watson surcritiques tronqués à une hauteur finie.
Accepted:
Published online:
Bruno Schapira 1; Daniel Valesin 2
@article{AFST_2021_6_30_3_503_0, author = {Bruno Schapira and Daniel Valesin}, title = {Exponential rate for the contact process extinction time}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {503--526}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {3}, year = {2021}, doi = {10.5802/afst.1683}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1683/} }
TY - JOUR AU - Bruno Schapira AU - Daniel Valesin TI - Exponential rate for the contact process extinction time JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 503 EP - 526 VL - 30 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1683/ DO - 10.5802/afst.1683 LA - en ID - AFST_2021_6_30_3_503_0 ER -
%0 Journal Article %A Bruno Schapira %A Daniel Valesin %T Exponential rate for the contact process extinction time %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 503-526 %V 30 %N 3 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1683/ %R 10.5802/afst.1683 %G en %F AFST_2021_6_30_3_503_0
Bruno Schapira; Daniel Valesin. Exponential rate for the contact process extinction time. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 3, pp. 503-526. doi : 10.5802/afst.1683. https://afst.centre-mersenne.org/articles/10.5802/afst.1683/
[1] Branching processes, 2004 (Courier Corporation) | Zbl
[2] Contact and voter processes on the infinite percolation cluster as models of host-symbiont interactions, Ann. Appl. Probab., Volume 21 (2011) no. 4, pp. 1215-1252 | MR | Zbl
[3] Maker-breaker games on random geometric graphs, Random Struct. Algorithms, Volume 45 (2014) no. 4, pp. 553-607 | DOI | MR | Zbl
[4] Percolation in strongly correlated systems: the massless Gaussian field, J. Stat. Phys., Volume 48 (1987) no. 5-6, pp. 1249-1268 | DOI | MR | Zbl
[5] Super-exponential extinction time of the contact process on random geometric graphs, Comb. Probab. Comput., Volume 27 (2018) no. 2, pp. 162-185 | DOI | MR | Zbl
[6] From random walk trajectories to random interlacements, Ensaios Matemáticos, 23, Sociedade Brasileira de Matemática, 2012, ii+78 pages | MR | Zbl
[7] The complete convergence theorem holds for contact processes on open clusters of , J. Stat. Phys., Volume 135 (2009) no. 4, pp. 651-680 | DOI | MR | Zbl
[8] Surface order large deviations for 2D FK-percolation and Potts models, Stochastic Processes Appl., Volume 113 (2004) no. 1, pp. 81-99 | DOI | MR | Zbl
[9] The contact process on finite homogeneous trees revisited, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 11 (2014) no. 1, pp. 385-408 | MR | Zbl
[10] An introduction to random interlacements, SpringerBriefs in Mathematics, Springer, 2014, x+120 pages | Zbl
[11] On chemical distances and shape theorems in percolation models with long-range correlations, J. Math. Phys., Volume 55 (2014) no. 8, 083307, 30 pages | MR | Zbl
[12] The contact process on a finite set. II, Ann. Probab., Volume 16 (1988) no. 4, pp. 1570-1583 | MR | Zbl
[13] Percolation, Grundlehren der Mathematischen Wissenschaften, 321, Springer, 1999, xiv+444 pages | Zbl
[14] Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, 123, Cambridge University Press, 2010, xii+364 pages | MR | Zbl
[15] Stochastic interacting systems: contact, voter and exclusion processes, Grundlehren der Mathematischen Wissenschaften, 324, Springer, 1999, xii+332 pages | MR | Zbl
[16] Percolation by cumulative merging and phase transition for the contact process on random graphs, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 5, pp. 1189-1238 | DOI | MR | Zbl
[17] Existence of a constant for finite system extinction, J. Stat. Phys., Volume 96 (1999) no. 5-6, pp. 1331-1341 | DOI | MR | Zbl
[18] Exponential extinction time of the contact process on finite graphs, Stochastic Processes Appl., Volume 126 (2016) no. 7, pp. 1974-2013 | DOI | MR | Zbl
[19] The contact process on trees, Ann. Probab., Volume 20 (1992) no. 4, pp. 2089-2116 | MR | Zbl
[20] Random geometric graphs, Oxford Studies in Probability, 5, Oxford University Press, 2003, xiv+330 pages | MR | Zbl
[21] Surface order large deviations for Ising, Potts and percolation models, Probab. Theory Relat. Fields, Volume 104 (1996) no. 4, pp. 427-466 | DOI | MR | Zbl
[22] On decoupling inequalities and percolation of excursion sets of the Gaussian free field, J. Stat. Phys., Volume 159 (2015) no. 2, pp. 312-320 | DOI | MR | Zbl
[23] A short proof of the phase transition for the vacant set of random interlacements, Electron. Commun. Probab., Volume 20 (2015), 3, 11 pages | MR | Zbl
[24] On the transience of random interlacements, Electron. Commun. Probab., Volume 16 (2011), pp. 379-391 | MR | Zbl
[25] Phase transition and level-set percolation for the Gaussian free field, Commun. Math. Phys., Volume 320 (2013) no. 2, pp. 571-601 | DOI | MR | Zbl
[26] Random walks on infinite percolation clusters in models with long-range correlations, Ann. Probab., Volume 45 (2017) no. 3, pp. 1842-1898 | MR | Zbl
[27] Extinction time for the contact process on general graphs, Probab. Theory Relat. Fields, Volume 169 (2017) no. 3-4, pp. 871-899 | DOI | MR | Zbl
[28] Percolation for the vacant set of random interlacements, Commun. Pure Appl. Math., Volume 62 (2009) no. 6, pp. 831-858 | DOI | MR | Zbl
[29] Vacant set of random interlacements and percolation, Ann. Math., Volume 171 (2010) no. 3, pp. 2039-2087 | DOI | MR | Zbl
[30] Disconnection and level-set percolation for the Gaussian free field, J. Math. Soc. Japan, Volume 67 (2015) no. 4, pp. 1801-1843 | MR | Zbl
[31] On the uniqueness of the infinite cluster of the vacant set of random interlacements, Ann. Appl. Probab., Volume 19 (2009) no. 1, pp. 454-466 | MR | Zbl
[32] On the size of a finite vacant cluster of random interlacements with small intensity, Probab. Theory Relat. Fields, Volume 150 (2011) no. 3-4, pp. 529-574 | DOI | MR | Zbl
[33] Critical value for contact processes on clusters of oriented bond percolation, Physica A, Volume 448 (2016), pp. 205-215 | MR | Zbl
Cited by Sources: