We give a factorization of the cycle of a bounded complex of vector bundles in terms of certain associated differential forms and residue currents. This is a generalization of previous results in the case when the complex is a locally free resolution of the structure sheaf of an analytic space and it can be seen as a generalization of the classical Lelong–Poincaré formula.
Nous donnons une factorisation du cycle associé à un complexe de fibrés vectoriels comme produit d’un certain courant résiduel (construit à l’aide de ce complexe) et d’une forme différentielle lisse. C’est une généralisation de résultats antérieurs où le complexe est une résolution localement libre du faisceau structural d’un espace analytique. Ce résultat peut être interprété comme une version abstraite de la formule de Lelong–Poincaré.
Accepted:
Published online:
Richard Lärkäng 1; Elizabeth Wulcan 1
@article{AFST_2021_6_30_5_961_0, author = {Richard L\"ark\"ang and Elizabeth Wulcan}, title = {Residue currents and cycles of complexes of vector bundles}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {961--984}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {5}, year = {2021}, doi = {10.5802/afst.1692}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1692/} }
TY - JOUR AU - Richard Lärkäng AU - Elizabeth Wulcan TI - Residue currents and cycles of complexes of vector bundles JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 961 EP - 984 VL - 30 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1692/ DO - 10.5802/afst.1692 LA - en ID - AFST_2021_6_30_5_961_0 ER -
%0 Journal Article %A Richard Lärkäng %A Elizabeth Wulcan %T Residue currents and cycles of complexes of vector bundles %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 961-984 %V 30 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1692/ %R 10.5802/afst.1692 %G en %F AFST_2021_6_30_5_961_0
Richard Lärkäng; Elizabeth Wulcan. Residue currents and cycles of complexes of vector bundles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 5, pp. 961-984. doi : 10.5802/afst.1692. https://afst.centre-mersenne.org/articles/10.5802/afst.1692/
[1] Residue currents and ideals of holomorphic functions, Bull. Sci. Math., Volume 128 (2004) no. 6, pp. 481-512 | DOI | MR | Zbl
[2] Residues of holomorphic sections and Lelong currents, Ark. Mat., Volume 43 (2005) no. 2, pp. 201-219 | DOI | MR | Zbl
[3] Uniqueness and factorization of Coleff-Herrera currents, Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 4, pp. 651-661 | DOI | Numdam | MR | Zbl
[4] Residue currents with prescribed annihilator ideals, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 6, pp. 985-1007 | DOI | Numdam | MR | Zbl
[5] Decomposition of residue currents, J. Reine Angew. Math., Volume 638 (2010), pp. 103-118 | MR | Zbl
[6] Calcul différentiel et classes caractéristiques en géométrie algébrique, Travaux en Cours, 38, Hermann, 1989, 129 pages
[7] Éléments de mathématique. Algèbre commutative. Chapitre 4: Idéaux premiers associés et décomposition primaire, Springer, 1985
[8] Les courants résiduels associés à une forme méromorphe, Lecture Notes in Mathematics, 633, Springer, 1978, x+209 pages | DOI
[9] Courants résidus des formes semi-méromorphes, Séminaire Pierre Lelong (Analyse) (année 1970) (Lecture Notes in Mathematics), Volume 205 (1971), pp. 56-70 | DOI | Zbl
[10] A new algebraic criterion for shellability, Beitr. Algebra Geom., Volume 34 (1993) no. 1, pp. 45-55 | MR | Zbl
[11] Commutative algebra, Graduate Texts in Mathematics, 150, Springer, 1995, xvi+785 pages | DOI | Zbl
[12] Projective resolutions of Cohen-Macaulay algebras, Math. Ann., Volume 257 (1981) no. 1, pp. 85-98 | DOI | MR | Zbl
[13] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1998, xiii+470 pages | DOI | Zbl
[14] Residues and principal values on complex spaces, Math. Ann., Volume 194 (1971), pp. 259-294 | DOI | MR | Zbl
[15] Intersection theory and enumerative geometry: a decade in review, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Proceedings of Symposia in Pure Mathematics), Volume 46, American Mathematical Society, 1985, pp. 321-370 (with the collaboration of Anders Thorup on §3) | MR | Zbl
[16] A comparison formula for residue currents, Math. Scand., Volume 125 (2019) no. 1, pp. 39-66 | DOI | MR | Zbl
[17] Residue currents and fundamental cycles, Indiana Univ. Math. J., Volume 67 (2018) no. 3, pp. 1085-1114 | DOI | MR | Zbl
[18] Remarque sur la classe fondamentale d’un cycle, C. R. Acad. Sci. Paris, Volume 292 (1981) no. 17, pp. 801-804 | MR | Zbl
[19] Residue currents of the Bochner-Martinelli type, Publ. Mat., Barc., Volume 44 (2000) no. 1, pp. 85-117 | DOI | MR | Zbl
[20] Multiplicities and Chern classes in local algebra, Cambridge Tracts in Mathematics, 133, Cambridge University Press, 1998, xi+303 pages | DOI | MR
[21] Quasi-Frobenius-Algebren und lokal vollständige Durchschnitte, Manuscr. Math., Volume 19 (1976) no. 1, pp. 75-104 | DOI | Zbl
[22] Stacks Project, 2018 (http://stacks.math.columbia.edu)
[23] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1994, xiv+450 pages | DOI
Cited by Sources: