Residue currents and cycles of complexes of vector bundles
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 5, pp. 961-984.

We give a factorization of the cycle of a bounded complex of vector bundles in terms of certain associated differential forms and residue currents. This is a generalization of previous results in the case when the complex is a locally free resolution of the structure sheaf of an analytic space and it can be seen as a generalization of the classical Lelong–Poincaré formula.

Nous donnons une factorisation du cycle associé à un complexe de fibrés vectoriels comme produit d’un certain courant résiduel (construit à l’aide de ce complexe) et d’une forme différentielle lisse. C’est une généralisation de résultats antérieurs où le complexe est une résolution localement libre du faisceau structural d’un espace analytique. Ce résultat peut être interprété comme une version abstraite de la formule de Lelong–Poincaré.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1692
Classification: 13D02, 14C99, 32A27, 32B15, 32C30

Richard Lärkäng 1; Elizabeth Wulcan 1

1 Department of Mathematical Sciences, University of Gothenburg and Chalmers University of Technology, SE-412 96 Göteborg, Sweden
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2021_6_30_5_961_0,
     author = {Richard L\"ark\"ang and Elizabeth Wulcan},
     title = {Residue currents and cycles of complexes of vector bundles},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {961--984},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 30},
     number = {5},
     year = {2021},
     doi = {10.5802/afst.1692},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1692/}
}
TY  - JOUR
AU  - Richard Lärkäng
AU  - Elizabeth Wulcan
TI  - Residue currents and cycles of complexes of vector bundles
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2021
SP  - 961
EP  - 984
VL  - 30
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1692/
DO  - 10.5802/afst.1692
LA  - en
ID  - AFST_2021_6_30_5_961_0
ER  - 
%0 Journal Article
%A Richard Lärkäng
%A Elizabeth Wulcan
%T Residue currents and cycles of complexes of vector bundles
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2021
%P 961-984
%V 30
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1692/
%R 10.5802/afst.1692
%G en
%F AFST_2021_6_30_5_961_0
Richard Lärkäng; Elizabeth Wulcan. Residue currents and cycles of complexes of vector bundles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 30 (2021) no. 5, pp. 961-984. doi : 10.5802/afst.1692. https://afst.centre-mersenne.org/articles/10.5802/afst.1692/

[1] Mats Andersson Residue currents and ideals of holomorphic functions, Bull. Sci. Math., Volume 128 (2004) no. 6, pp. 481-512 | DOI | MR | Zbl

[2] Mats Andersson Residues of holomorphic sections and Lelong currents, Ark. Mat., Volume 43 (2005) no. 2, pp. 201-219 | DOI | MR | Zbl

[3] Mats Andersson Uniqueness and factorization of Coleff-Herrera currents, Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 4, pp. 651-661 | DOI | Numdam | MR | Zbl

[4] Mats Andersson; Elizabeth Wulcan Residue currents with prescribed annihilator ideals, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 6, pp. 985-1007 | DOI | Numdam | MR | Zbl

[5] Mats Andersson; Elizabeth Wulcan Decomposition of residue currents, J. Reine Angew. Math., Volume 638 (2010), pp. 103-118 | MR | Zbl

[6] Bernard Angéniol; Monique Lejeune-Jalabert Calcul différentiel et classes caractéristiques en géométrie algébrique, Travaux en Cours, 38, Hermann, 1989, 129 pages

[7] Nicolas Bourbaki Éléments de mathématique. Algèbre commutative. Chapitre 4: Idéaux premiers associés et décomposition primaire, Springer, 1985

[8] Nicolas R. Coleff; Miguel E. M. Herrera Les courants résiduels associés à une forme méromorphe, Lecture Notes in Mathematics, 633, Springer, 1978, x+209 pages | DOI

[9] Pierre Dolbeault Courants résidus des formes semi-méromorphes, Séminaire Pierre Lelong (Analyse) (année 1970) (Lecture Notes in Mathematics), Volume 205 (1971), pp. 56-70 | DOI | Zbl

[10] Andreas Dress A new algebraic criterion for shellability, Beitr. Algebra Geom., Volume 34 (1993) no. 1, pp. 45-55 | MR | Zbl

[11] David Eisenbud Commutative algebra, Graduate Texts in Mathematics, 150, Springer, 1995, xvi+785 pages | DOI | Zbl

[12] David Eisenbud; Oswald Riemenschneider; Frank-Olaf Schreyer Projective resolutions of Cohen-Macaulay algebras, Math. Ann., Volume 257 (1981) no. 1, pp. 85-98 | DOI | MR | Zbl

[13] William Fulton Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1998, xiii+470 pages | DOI | Zbl

[14] Miguel E. M. Herrera; David I. Lieberman Residues and principal values on complex spaces, Math. Ann., Volume 194 (1971), pp. 259-294 | DOI | MR | Zbl

[15] Steven L. Kleiman Intersection theory and enumerative geometry: a decade in review, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Proceedings of Symposia in Pure Mathematics), Volume 46, American Mathematical Society, 1985, pp. 321-370 (with the collaboration of Anders Thorup on §3) | MR | Zbl

[16] Richard Lärkäng A comparison formula for residue currents, Math. Scand., Volume 125 (2019) no. 1, pp. 39-66 | DOI | MR | Zbl

[17] Richard Lärkäng; Elizabeth Wulcan Residue currents and fundamental cycles, Indiana Univ. Math. J., Volume 67 (2018) no. 3, pp. 1085-1114 | DOI | MR | Zbl

[18] Monique Lejeune-Jalabert Remarque sur la classe fondamentale d’un cycle, C. R. Acad. Sci. Paris, Volume 292 (1981) no. 17, pp. 801-804 | MR | Zbl

[19] Mikael Passare; August Tsikh; Alain Yger Residue currents of the Bochner-Martinelli type, Publ. Mat., Barc., Volume 44 (2000) no. 1, pp. 85-117 | DOI | MR | Zbl

[20] Paul C. Roberts Multiplicities and Chern classes in local algebra, Cambridge Tracts in Mathematics, 133, Cambridge University Press, 1998, xi+303 pages | DOI | MR

[21] Günter Scheja; Uwe Storch Quasi-Frobenius-Algebren und lokal vollständige Durchschnitte, Manuscr. Math., Volume 19 (1976) no. 1, pp. 75-104 | DOI | Zbl

[22] Stacks Project Authors Stacks Project, 2018 (http://stacks.math.columbia.edu)

[23] Charles A. Weibel An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1994, xiv+450 pages | DOI

Cited by Sources: