We describe the topology of singular real algebraic curves in a smooth surface. We enumerate and bound the number of topological types of singular algebraic curves in the real projective plane as a function of the degree.
Nous décrivons la topologie des courbes algébriques réelles singulières dans une surface lisse. Nous énumérons et bornons en fonction du degré le nombre de types topologiques de courbes algébriques singulières du plan projectif réel.
Accepted:
Published online:
DOI: 10.5802/afst.1698
Christopher-Lloyd Simon 1
@article{AFST_2022_6_31_2_383_0, author = {Christopher-Lloyd Simon}, title = {Topologie et d\'enombrement des courbes alg\'ebriques r\'eelles}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {383--422}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {6e s{\'e}rie, 31}, number = {2}, year = {2022}, doi = {10.5802/afst.1698}, zbl = {07549944}, language = {fr}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1698/} }
TY - JOUR AU - Christopher-Lloyd Simon TI - Topologie et dénombrement des courbes algébriques réelles JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 383 EP - 422 VL - 31 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1698/ DO - 10.5802/afst.1698 LA - fr ID - AFST_2022_6_31_2_383_0 ER -
%0 Journal Article %A Christopher-Lloyd Simon %T Topologie et dénombrement des courbes algébriques réelles %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 383-422 %V 31 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1698/ %R 10.5802/afst.1698 %G fr %F AFST_2022_6_31_2_383_0
Christopher-Lloyd Simon. Topologie et dénombrement des courbes algébriques réelles. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 2, pp. 383-422. doi : 10.5802/afst.1698. https://afst.centre-mersenne.org/articles/10.5802/afst.1698/
[1] Formulae and asymptotics for coefficients of algebraic functions, Comb. Probab. Comput., Volume 24 (2015), pp. 1-53 | DOI | MR | Zbl
[2] Real Algebraic Geometry, Springer, 1992
[3] Reducing prime graphs and recognizing circle graphs, Combinatorica, Volume 7 (1987), pp. 243-254 | DOI | MR | Zbl
[4] Circle Graph Obstructions, J. Comb. Theory, Ser. B, Volume 60 (1994) no. 1, pp. 107-144 | DOI | MR | Zbl
[5] Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. Fr., Volume 85 (1957), pp. 77-99 | DOI | Numdam | Zbl
[6] Sur les fonctions de plusieurs variables complexes : les espaces analytiques, Congrès International des Mathématiciens (Edinburgh, 1958), 1960, pp. 33-52 | Zbl
[7] Introduction to Vassiliev Knot Invariants, Cambridge University Press, 2012 | DOI
[8] Decomposition of directed graphs, SIAM J. Algebraic Discrete Methods, Volume 3 (1982), pp. 214-228 | DOI | MR | Zbl
[9] Cours de géométrie algébrique 1, Presses Universitaires de France, 1974
[10] Analytic Combinatorics, Cambridge University Press, 2009 | DOI
[11] Homotopy of operads and Grothendieck-Teichmuller groups, Mathematical Surveys and Monographs, 217, American Mathematical Society, 2017
[12] A singular mathematical promenade, ENS Editions, 2017
[13] On the topology of a real analytic curve in the neighborhood of a singular point, Some aspects of the theory of dynamical systems : a tribute to Jean-Christophe Yoccoz (Astérisque), Volume 415, Société Mathématique de France, 2020, pp. 1-33 | Zbl
[14] Split decomposition and graph-labelled trees : characterizations and fully dynamic algorithms for totally decomposable graphs, Discrete Appl. Math., Volume 160 (2012) no. 6, pp. 708-733 | DOI | MR | Zbl
[15] On Levi’s problem and the imbedding of real-analytic manifolds, Ann. Math., Volume 68 (1958), pp. 460-472 | DOI | MR | Zbl
[16] Asymptotic growth of the number of classes of real plane algebraic curves as the degree grows, J. Math. Sci., New York, Volume 113 (2003) no. 5, pp. 666-674
[17] The number of trees half of whose vertices are leaves and asymptotic enumeration of plane real algebraic curves, J. Comb. Theory, Ser. A, Volume 105 (2004) no. 1, pp. 127-142 | DOI | MR | Zbl
[18] Nash’s work in algebraic geometry, Bull. Am. Math. Soc., Volume 54 (2017) no. 2, pp. 307-324 | DOI | MR | Zbl
[19] Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, 141, Springer, 2004 | DOI
[20] The On-Line Encyclopedia of Integer Sequences (https://oeis.org)
[21] A census of slicings, Can. J. Math., Volume 14 (1962), pp. 708-722 | DOI | MR | Zbl
[22] Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., Volume 36 (1934), pp. 63-89 | DOI | MR
Cited by Sources: