A rigorous probabilistic construction of Liouville conformal field theory (LCFT) on the Riemann sphere was recently given by David–Kupiainen and the last two authors. In this paper, we focus on the connection between LCFT and the classical Liouville field theory via the semiclassical approach. LCFT depends on a parameter and the limit corresponds to the semiclassical limit of the theory. Within this asymptotic and under a negative curvature condition (on the limiting metric of the theory), we determine the limit of the correlation functions and of the associated Liouville field. We also establish a large deviation result for the Liouville field: as expected, the large deviation functional is the classical Liouville action. As a corollary, we give a new (probabilistic) proof of the Takhtajan–Zograf theorem which relates the classical Liouville action (taken at its minimum) to Poincaré’s accessory parameters. Finally, we gather conjectures in the positive curvature case (including the study of the so-called quantum spheres introduced by Duplantier–Miller–Sheffield).
La théorie conforme des champs de Liouville sur la sphère de Riemann (LCFT) a récemment été construite via la théorie des probabilités par David–Kupiainen et les deux derniers auteurs. Dans ce papier, on étudie la relation entre LCFT et la théorie classique de Liouville via la limite semi-classique. LCFT dépend d’un paramètre et la limite correspond à la limite semi-classique. Dans le régime semi-classique, on détermine la limite des fonctions de corrélation et du champ de Liouville associé sous une condition de courbure négative (pour la métrique limite). On établit également un résultat de grandes déviations pour le champ de Liouville : comme attendu, la fonctionnelle de grandes déviations est l’action de Liouville classique. Comme corollaire, on obtient une preuve probabiliste du théorème de Takhtajan–Zograf qui relie l’action de Liouville classique (pris en son minimum) aux paramètres accessoires de Poincaré. Enfin, on énonce des conjectures dans le cas de la courbure positive (incluant l’étude des quantum spheres introduits par Duplantier–Miller–Sheffield).
Accepted:
Published online:
Keywords: Liouville Quantum Theory, Gaussian multiplicative chaos, Polyakov formula, uniformization, accessory parameters, semiclassical analysis.
Hubert Lacoin 1; Rémi Rhodes 2; Vincent Vargas 3
@article{AFST_2022_6_31_4_1031_0, author = {Hubert Lacoin and R\'emi Rhodes and Vincent Vargas}, title = {The semiclassical limit of {Liouville} conformal field theory}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1031--1083}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {4}, year = {2022}, doi = {10.5802/afst.1713}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1713/} }
TY - JOUR AU - Hubert Lacoin AU - Rémi Rhodes AU - Vincent Vargas TI - The semiclassical limit of Liouville conformal field theory JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 1031 EP - 1083 VL - 31 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1713/ DO - 10.5802/afst.1713 LA - en ID - AFST_2022_6_31_4_1031_0 ER -
%0 Journal Article %A Hubert Lacoin %A Rémi Rhodes %A Vincent Vargas %T The semiclassical limit of Liouville conformal field theory %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 1031-1083 %V 31 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1713/ %R 10.5802/afst.1713 %G en %F AFST_2022_6_31_4_1031_0
Hubert Lacoin; Rémi Rhodes; Vincent Vargas. The semiclassical limit of Liouville conformal field theory. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 4, pp. 1031-1083. doi : 10.5802/afst.1713. https://afst.centre-mersenne.org/articles/10.5802/afst.1713/
[1] Large deviations of radial , Electron. J. Probab., Volume 25 (2020), 102, 13 pages | Zbl
[2] An elementary approach to Gaussian multiplicative chaos, Electron. J. Probab., Volume 22 (2017), 27, 12 pages | MR | Zbl
[3] Liouville quantum gravity on the Riemann sphere, Commun. Math. Phys., Volume 342 (2016) no. 3, pp. 869-907 | DOI | MR | Zbl
[4] Large Deviations Techniques and Applications, Applications of Mathematics, 38, Springer, 1998 | DOI
[5] SLE and the Free Field: partition functions and couplings, J. Am. Math. Soc., Volume 22 (2009) no. 4, pp. 995-1054 | DOI | MR | Zbl
[6] Liouville quantum gravity as a mating of trees (2014) (https://arxiv.org/abs/1409.7055)
[7] Metrics of positive curvature with conic singularities on the sphere, Proc. Am. Math. Soc., Volume 132 (2004) no. 11, pp. 3349-3355 | DOI | MR | Zbl
[8] Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, 129, Cambridge University Press, 2008
[9] Local conformal structure of Liouville Quantum Gravity, Commun. Math. Phys., Volume 371 (2019) no. 3, pp. 1005-1069 | DOI | MR | Zbl
[10] Integrability of Liouville theory: proof of the DOZZ Formula, Ann. Math., Volume 191 (2020) no. 1, pp. 81-166 | MR | Zbl
[11] Semiclassical limit of Liouville Field theory, J. Funct. Anal., Volume 273 (2017) no. 3, pp. 875-916 | DOI | MR | Zbl
[12] Classical conformal blocks and Painleve VI, J. High Energy Phys., Volume 2014 (2014) no. 7, 144, 19 pages | MR | Zbl
[13] Liouville Equation and Spherical Convex Polytopes, Proc. Am. Math. Soc., Volume 116 (1992) no. 4, pp. 1119-1129 | MR | Zbl
[14] New improved Moser–Trudinger inequalities and singular Liouville equations on compact surfaces, Geom. Funct. Anal., Volume 21 (2011) no. 5, pp. 1196-1217 | DOI | MR | Zbl
[15] Spherical metrics with conical singularities on a 2-sphere: angle constraints (2015) (https://arxiv.org/abs/1505.01994)
[16] pherical surfaces with conical points: systole inequality and moduli spaces with many connected components (2018) (https://arxiv.org/abs/1807.04373)
[17] Sufficient conditions for the characteristic function of a two-dimensional isotropic distribution, Theory Probab. Math. Stat., Volume 53 (1996), pp. 149-152 | MR
[18] Large deviations of multichordal , real rational functions, and zeta-regularized determinants of Laplacians (2020) (https://arxiv.org/abs/2006.08574)
[19] De l’équation sur une surface de Riemann fermée, Journ. de Math., Volume 9 (1893), pp. 273-291
[20] De l’intégration de l’équation sur une surface de Riemann fermée, J. Reine Angew. Math., Volume 130 (1905), pp. 243-258 | DOI
[21] Positively Correlated Normal Variables are Associated, Ann. Probab., Volume 10 (1982), pp. 496-499 | MR | Zbl
[22] Les fonctions fuchsiennes et l’équation , Journ. de Math., Volume 5 (1898), pp. 137-230 | Zbl
[23] The Fyodorov-Bouchaud formula and Liouville conformal field theory, Duke Math. J., Volume 169 (2020) no. 1, pp. 177-211 | MR | Zbl
[24] Gaussian multiplicative chaos revisited, Ann. Probab., Volume 38 (2010) no. 2, pp. 605-631 | MR
[25] Gaussian multiplicative chaos and applications: a review, Probab. Surv., Volume 11 (2014), pp. 315-392 | MR | Zbl
[26] Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity (2016) (https://arxiv.org/abs/1602.07323)
[27] Notes on Quantum Liouville Theory and Quantum Gravity, Common trends in mathematics and quantum field theories (Progress of Theoretical Physics. Supplement), Volume 102, Yukawa Institute for Theoretical Physics, 1990, pp. 319-349 | Zbl
[28] Gaussian free fields for mathematicians, Probab. Theory Relat. Fields, Volume 139 (2007) no. 4, pp. 521-541 | DOI | MR | Zbl
[29] The Euclidean (quantum) field theory, Princeton Series in Physics, Princeton University Press, 1974 | Numdam
[30] Hyperbolic -spheres with conical singularities, accessory parameters and Kähler metrics on , Trans. Am. Math. Soc., Volume 355 (2003) no. 5, pp. 1857-1867 | DOI | Zbl
[31] Equivalence of Geometric and Standard Approaches to Two-Dimensional Quantum Gravity (1995) (https://arxiv.org/abs/hep-th/9509026)
[32] Topics in quantum geometry of Riemann surfaces: Two-dimensional quantum gravity, Quantum groups and their applications in physics (Proceedings of the International School of Physics “Enrico Fermi”), Volume 127, IOS Press, 1996, pp. 541-579 | MR | Zbl
[33] Prescribing curvature on compact surfaces with conical singularities, Trans. Am. Math. Soc., Volume 324 (1991) no. 2, pp. 793-821 | DOI | MR | Zbl
[34] Interplay between Loewner and Dirichlet energies via conformal welding and flow-lines, Geom. Funct. Anal., Volume 30 (2020) no. 1, pp. 289-321 | DOI | MR | Zbl
[35] The energy of a deterministic Loewner chain: Reversibility and interpretation via , J. Eur. Math. Soc., Volume 21 (2019) no. 7, pp. 1915-1941 | DOI | MR | Zbl
[36] Large deviations of Schramm-Loewner evolutions: A survey (2021) (https://arxiv.org/abs/2102.07032)
Cited by Sources: