The semiclassical limit of Liouville conformal field theory
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 4, pp. 1031-1083.

A rigorous probabilistic construction of Liouville conformal field theory (LCFT) on the Riemann sphere was recently given by David–Kupiainen and the last two authors. In this paper, we focus on the connection between LCFT and the classical Liouville field theory via the semiclassical approach. LCFT depends on a parameter γ(0,2) and the limit γ0 corresponds to the semiclassical limit of the theory. Within this asymptotic and under a negative curvature condition (on the limiting metric of the theory), we determine the limit of the correlation functions and of the associated Liouville field. We also establish a large deviation result for the Liouville field: as expected, the large deviation functional is the classical Liouville action. As a corollary, we give a new (probabilistic) proof of the Takhtajan–Zograf theorem which relates the classical Liouville action (taken at its minimum) to Poincaré’s accessory parameters. Finally, we gather conjectures in the positive curvature case (including the study of the so-called quantum spheres introduced by Duplantier–Miller–Sheffield).

La théorie conforme des champs de Liouville sur la sphère de Riemann (LCFT) a récemment été construite via la théorie des probabilités par David–Kupiainen et les deux derniers auteurs. Dans ce papier, on étudie la relation entre LCFT et la théorie classique de Liouville via la limite semi-classique. LCFT dépend d’un paramètre γ(0,2) et la limite γ0 correspond à la limite semi-classique. Dans le régime semi-classique, on détermine la limite des fonctions de corrélation et du champ de Liouville associé sous une condition de courbure négative (pour la métrique limite). On établit également un résultat de grandes déviations pour le champ de Liouville : comme attendu, la fonctionnelle de grandes déviations est l’action de Liouville classique. Comme corollaire, on obtient une preuve probabiliste du théorème de Takhtajan–Zograf qui relie l’action de Liouville classique (pris en son minimum) aux paramètres accessoires de Poincaré. Enfin, on énonce des conjectures dans le cas de la courbure positive (incluant l’étude des quantum spheres introduits par Duplantier–Miller–Sheffield).

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1713
Classification: 81T40, 81T20, 60D05
Keywords: Liouville Quantum Theory, Gaussian multiplicative chaos, Polyakov formula, uniformization, accessory parameters, semiclassical analysis.

Hubert Lacoin 1; Rémi Rhodes 2; Vincent Vargas 3

1 IMPA, Rio de Janeiro, Brasil
2 Université Aix-Marseille, I2M, Marseille, France
3 ENS Ulm, DMA, 45 rue d’Ulm, 75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2022_6_31_4_1031_0,
     author = {Hubert Lacoin and R\'emi Rhodes and Vincent Vargas},
     title = {The semiclassical limit of {Liouville} conformal field theory},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1031--1083},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {4},
     year = {2022},
     doi = {10.5802/afst.1713},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1713/}
}
TY  - JOUR
AU  - Hubert Lacoin
AU  - Rémi Rhodes
AU  - Vincent Vargas
TI  - The semiclassical limit of Liouville conformal field theory
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 1031
EP  - 1083
VL  - 31
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1713/
DO  - 10.5802/afst.1713
LA  - en
ID  - AFST_2022_6_31_4_1031_0
ER  - 
%0 Journal Article
%A Hubert Lacoin
%A Rémi Rhodes
%A Vincent Vargas
%T The semiclassical limit of Liouville conformal field theory
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 1031-1083
%V 31
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1713/
%R 10.5802/afst.1713
%G en
%F AFST_2022_6_31_4_1031_0
Hubert Lacoin; Rémi Rhodes; Vincent Vargas. The semiclassical limit of Liouville conformal field theory. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 4, pp. 1031-1083. doi : 10.5802/afst.1713. https://afst.centre-mersenne.org/articles/10.5802/afst.1713/

[1] Morris Ang; Minjae Park; Yilin Wang Large deviations of radial SLE i nfty, Electron. J. Probab., Volume 25 (2020), 102, 13 pages | Zbl

[2] Nathanaël Berestycki An elementary approach to Gaussian multiplicative chaos, Electron. J. Probab., Volume 22 (2017), 27, 12 pages | MR | Zbl

[3] François David; Antti Kupiainen; Rémi Rhodes; Vincent Vargas Liouville quantum gravity on the Riemann sphere, Commun. Math. Phys., Volume 342 (2016) no. 3, pp. 869-907 | DOI | MR | Zbl

[4] Amir Dembo; Ofer Zeitouni Large Deviations Techniques and Applications, Applications of Mathematics, 38, Springer, 1998 | DOI

[5] Julien Dubédat SLE and the Free Field: partition functions and couplings, J. Am. Math. Soc., Volume 22 (2009) no. 4, pp. 995-1054 | DOI | MR | Zbl

[6] Bertrand Duplantier; Jason Miller; Scott Sheffield Liouville quantum gravity as a mating of trees (2014) (https://arxiv.org/abs/1409.7055)

[7] Alexandre Eremenko Metrics of positive curvature with conic singularities on the sphere, Proc. Am. Math. Soc., Volume 132 (2004) no. 11, pp. 3349-3355 | DOI | MR | Zbl

[8] Svante Janson Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, 129, Cambridge University Press, 2008

[9] Antti Kupiainen; Rémi Rhodes; Vincent Vargas Local conformal structure of Liouville Quantum Gravity, Commun. Math. Phys., Volume 371 (2019) no. 3, pp. 1005-1069 | DOI | MR | Zbl

[10] Antti Kupiainen; Rémi Rhodes; Vincent Vargas Integrability of Liouville theory: proof of the DOZZ Formula, Ann. Math., Volume 191 (2020) no. 1, pp. 81-166 | MR | Zbl

[11] Hubert Lacoin; Rémi Rhodes; Vincent Vargas Semiclassical limit of Liouville Field theory, J. Funct. Anal., Volume 273 (2017) no. 3, pp. 875-916 | DOI | MR | Zbl

[12] Alexey Litvinov; Sergei Lukyanov; Nikita Nekrasov; Alexander Zamolodchikov Classical conformal blocks and Painleve VI, J. High Energy Phys., Volume 2014 (2014) no. 7, 144, 19 pages | MR | Zbl

[13] Feng Luo; Gang Tian Liouville Equation and Spherical Convex Polytopes, Proc. Am. Math. Soc., Volume 116 (1992) no. 4, pp. 1119-1129 | MR | Zbl

[14] Andrea Malchiodi; David Ruiz New improved Moser–Trudinger inequalities and singular Liouville equations on compact surfaces, Geom. Funct. Anal., Volume 21 (2011) no. 5, pp. 1196-1217 | DOI | MR | Zbl

[15] Gabriele Mondello; Dmitri Panov Spherical metrics with conical singularities on a 2-sphere: angle constraints (2015) (https://arxiv.org/abs/1505.01994)

[16] Gabriele Mondello; Dmitri Panov pherical surfaces with conical points: systole inequality and moduli spaces with many connected components (2018) (https://arxiv.org/abs/1807.04373)

[17] O. Yu. Pasenchenko Sufficient conditions for the characteristic function of a two-dimensional isotropic distribution, Theory Probab. Math. Stat., Volume 53 (1996), pp. 149-152 | MR

[18] Eveliina Peltola; Yilin Wang Large deviations of multichordal SLE0+, real rational functions, and zeta-regularized determinants of Laplacians (2020) (https://arxiv.org/abs/2006.08574)

[19] Émile Picard De l’équation Δu=ke u sur une surface de Riemann fermée, Journ. de Math., Volume 9 (1893), pp. 273-291

[20] Émile Picard De l’intégration de l’équation u=e u sur une surface de Riemann fermée, J. Reine Angew. Math., Volume 130 (1905), pp. 243-258 | DOI

[21] Loren D. Pitt Positively Correlated Normal Variables are Associated, Ann. Probab., Volume 10 (1982), pp. 496-499 | MR | Zbl

[22] Henri Poincaré Les fonctions fuchsiennes et l’équation u=e u , Journ. de Math., Volume 5 (1898), pp. 137-230 | Zbl

[23] Guillaume Remy The Fyodorov-Bouchaud formula and Liouville conformal field theory, Duke Math. J., Volume 169 (2020) no. 1, pp. 177-211 | MR | Zbl

[24] Rémi Rhodes; Vincent Vargas Gaussian multiplicative chaos revisited, Ann. Probab., Volume 38 (2010) no. 2, pp. 605-631 | MR

[25] Rémi Rhodes; Vincent Vargas Gaussian multiplicative chaos and applications: a review, Probab. Surv., Volume 11 (2014), pp. 315-392 | MR | Zbl

[26] Rémi Rhodes; Vincent Vargas Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity (2016) (https://arxiv.org/abs/1602.07323)

[27] Nathan Seiberg Notes on Quantum Liouville Theory and Quantum Gravity, Common trends in mathematics and quantum field theories (Progress of Theoretical Physics. Supplement), Volume 102, Yukawa Institute for Theoretical Physics, 1990, pp. 319-349 | Zbl

[28] Scott Sheffield Gaussian free fields for mathematicians, Probab. Theory Relat. Fields, Volume 139 (2007) no. 4, pp. 521-541 | DOI | MR | Zbl

[29] Barry Simon The P(ϕ) 2 Euclidean (quantum) field theory, Princeton Series in Physics, Princeton University Press, 1974 | Numdam

[30] Leon Takhtajan; Peter Zograf Hyperbolic 2-spheres with conical singularities, accessory parameters and Kähler metrics on 0,n , Trans. Am. Math. Soc., Volume 355 (2003) no. 5, pp. 1857-1867 | DOI | Zbl

[31] Leon A. Takhtajan Equivalence of Geometric h<1/2 and Standard c>25 Approaches to Two-Dimensional Quantum Gravity (1995) (https://arxiv.org/abs/hep-th/9509026)

[32] Leon A. Takhtajan Topics in quantum geometry of Riemann surfaces: Two-dimensional quantum gravity, Quantum groups and their applications in physics (Proceedings of the International School of Physics “Enrico Fermi”), Volume 127, IOS Press, 1996, pp. 541-579 | MR | Zbl

[33] Marc Troyanov Prescribing curvature on compact surfaces with conical singularities, Trans. Am. Math. Soc., Volume 324 (1991) no. 2, pp. 793-821 | DOI | MR | Zbl

[34] Fredrik Viklund; Yilin Wang Interplay between Loewner and Dirichlet energies via conformal welding and flow-lines, Geom. Funct. Anal., Volume 30 (2020) no. 1, pp. 289-321 | DOI | MR | Zbl

[35] Yilin Wang The energy of a deterministic Loewner chain: Reversibility and interpretation via SLE 0+ , J. Eur. Math. Soc., Volume 21 (2019) no. 7, pp. 1915-1941 | DOI | MR | Zbl

[36] Yilin Wang Large deviations of Schramm-Loewner evolutions: A survey (2021) (https://arxiv.org/abs/2102.07032)

Cited by Sources: