We consider the probability measure minimizing a free energy functional equal to the sum of a Coulomb interaction, a confinement potential and an entropy term, which arises in the statistical mechanics of Coulomb gases. In the limit where the inverse temperature tends to the entropy term disappears and the measure, which we call the “thermal equilibrium measure” tends to the well-known equilibrium measure, which can also be interpreted as a solution to the classical obstacle problem. We provide quantitative estimates on the convergence of the thermal equilibrium measure to the equilibrium measure in strong norms in the bulk of the latter, with a sequence of explicit correction terms in powers of , as well as an analysis of the tail after the boundary layer of size .
On considère la mesure de probabilité qui minimise une énergie libre égale à la somme d’une interaction coulombienne, d’un potentiel de confinement et d’un terme d’entropie, et qui apparaît en mécanique statistique des gaz de Coulomb. Dans la limite où la température inverse tend vers l’infini, le terme d’entropie disparaît et la mesure, que l’on appelle “mesure d’équilibre thermique”, tend vers la mesure d’équilibre habituelle qui peut également être interprétée comme solution du problème de l’obstacle classique. On obtient des estimées quantitatives de convergence de la mesure d’équilibre thermique vers la mesure d’équilibre dans des normes fortes à l’intérieur du support de cette dernière, avec une série de termes correctifs explicites en puissances inverses de , de même qu’une analyse des queues apparaissant après une couche limite de taille .
Accepted:
Published online:
Scott Armstrong 1; Sylvia Serfaty 1
@article{AFST_2022_6_31_4_1085_0, author = {Scott Armstrong and Sylvia Serfaty}, title = {Thermal approximation of the equilibrium measure and obstacle problem}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1085--1110}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {4}, year = {2022}, doi = {10.5802/afst.1714}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1714/} }
TY - JOUR AU - Scott Armstrong AU - Sylvia Serfaty TI - Thermal approximation of the equilibrium measure and obstacle problem JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 1085 EP - 1110 VL - 31 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1714/ DO - 10.5802/afst.1714 LA - en ID - AFST_2022_6_31_4_1085_0 ER -
%0 Journal Article %A Scott Armstrong %A Sylvia Serfaty %T Thermal approximation of the equilibrium measure and obstacle problem %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 1085-1110 %V 31 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1714/ %R 10.5802/afst.1714 %G en %F AFST_2022_6_31_4_1085_0
Scott Armstrong; Sylvia Serfaty. Thermal approximation of the equilibrium measure and obstacle problem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 4, pp. 1085-1110. doi : 10.5802/afst.1714. https://afst.centre-mersenne.org/articles/10.5802/afst.1714/
[1] Invariant beta-ensembles and the Gauss-Wigner crossover, Phys. Rev. Lett., Volume 109 (2012), 094102, 5 pages | DOI
[2] Local Laws and Rigidity for Coulomb Gases at any Temperature, Ann. Probab., Volume 49 (2021) no. 1, pp. 46-121 | MR | Zbl
[3] Remarks on a constrained optimization problem for the Ginibre ensemble, Potential Anal., Volume 41 (2014) no. 3, pp. 945-958 | DOI | MR | Zbl
[4] From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit, Math. Z., Volume 291 (2019) no. 1-2, pp. 365-394 | DOI | MR | Zbl
[5] Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differ. Equ., Volume 1 (1993) no. 2, pp. 123-148 | DOI | MR | Zbl
[6] About the stationary states of vortex systems, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 35 (1999) no. 2, pp. 205-237 | DOI | Numdam | MR | Zbl
[7] The obstacle problem revisited, J. Fourier Anal. Appl., Volume 4 (1998) no. 4-5, pp. 383-402 | DOI | MR
[8] A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Commun. Math. Phys., Volume 143 (1992) no. 3, pp. 501-525 | DOI | MR | Zbl
[9] Diamètre transfini et comparaison de diverses capacités, 1958 (Technical report, Faculté des Sciences de Paris) | Numdam
[10] Generic regularity of free boundaries for the obstacle problem (2019) (https://arxiv.org/abs/1912.00714)
[11] Elliptic partial differential equations of second order. Reprint of the 1998 edition, Classics in Mathematics, Springer, 2001 | DOI
[12] CLT for Circular beta-Ensembles at High Temperature (2019) (https://arxiv.org/abs/1909.01142)
[13] On Kac’s chaos and related problems, J. Funct. Anal., Volume 266 (2014) no. 10, pp. 6055-6157 | DOI | MR | Zbl
[14] Statistical mechanics of classical particles with logarithmic interactions, Commun. Pure Appl. Math., Volume 46 (1993) no. 1, pp. 27-56 | DOI | MR | Zbl
[15] Large deviation principle for empirical fields of log and Riesz gases, Invent. Math., Volume 210 (2017) no. 3, pp. 645-757 | DOI | MR | Zbl
[16] Statistical mechanics of the isothermal Lane-Emden equation, J. Stat. Phys., Volume 29 (1982) no. 3, pp. 561-578 | DOI | MR
[17] Statistical mechanics of the -point vortex system with random intensities on a bounded domain, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 21 (2004) no. 3, pp. 381-399 | DOI | Numdam | MR | Zbl
[18] Quantum Hall phases and plasma analogy in rotating trapped Bose gases, J. Stat. Phys., Volume 154 (2014) no. 1-2, pp. 2-50 | DOI | MR | Zbl
[19] Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, 316, Springer, 1997 | DOI
[20] Coulomb gases and Ginzburg-Landau vortices, Zürich Lectures in Advanced Mathematics, 70, European Mathematical Society, 2015 | DOI | Numdam
[21] Gaussian Fluctuations and Free Energy Expansion for 2D and 3D Coulomb Gases at Any Temperature (2020) (https://arxiv.org/abs/2003.11704)
[22] Analysis and PDE, Anal. PDE, Volume 11 (2018) no. 7, pp. 1803-1839
Cited by Sources: