The aim of this note is to give a link between the spectral radius of the monodromy matrix of a linear differential equation with periodic coefficients , with a cooperative irreducible matrix, and the mean spectral abscissa .
Le but de cet article est d’établir un lien entre le rayon spectral de la matrice de monodromie d’une équation différentielle linéaire à coefficients périodiques , avec une matrice coopérative irréductible, avec la moyenne de l’abcisse spectrale .
Accepted:
Published online:
Keywords: Floquet’s theorem, spectral radius, spectral abscissa, ordinary differential equation, non negative matrices
Mot clés : théorème de Floquet, rayon spectral, abscisse spectrale, équation différentielle ordinaire, matrices à coefficients positifs
Philippe Carmona 1
@article{AFST_2022_6_31_4_1213_0, author = {Philippe Carmona}, title = {Asymptotic of the largest {Floquet} multiplier for cooperative matrices}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1213--1221}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {4}, year = {2022}, doi = {10.5802/afst.1716}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1716/} }
TY - JOUR AU - Philippe Carmona TI - Asymptotic of the largest Floquet multiplier for cooperative matrices JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 1213 EP - 1221 VL - 31 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1716/ DO - 10.5802/afst.1716 LA - en ID - AFST_2022_6_31_4_1213_0 ER -
%0 Journal Article %A Philippe Carmona %T Asymptotic of the largest Floquet multiplier for cooperative matrices %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 1213-1221 %V 31 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1716/ %R 10.5802/afst.1716 %G en %F AFST_2022_6_31_4_1213_0
Philippe Carmona. Asymptotic of the largest Floquet multiplier for cooperative matrices. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 4, pp. 1213-1221. doi : 10.5802/afst.1716. https://afst.centre-mersenne.org/articles/10.5802/afst.1716/
[1] Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1992
[2] On a differential equation arising from compartmental analysis, Math. Biosci., Volume 38 (1978) no. 1-2, pp. 113-122 | DOI | MR | Zbl
[3] Approximation of the basic reproduction number for vector-borne diseases with a periodic vector population, Bull. Math. Biol., Volume 69 (2007) no. 3, pp. 1067-1091 | DOI | MR | Zbl
[4] Periodic perturbations of an epidemic model
[5] Mathematical tools for understanding infectious disease dynamics, Princeton Series in Theoretical and Computational Biology., Princeton University Press, 2013, xiv+502 pages
[6] Threshold quantities for helminth infections, J. Math. Biol., Volume 33 (1995) no. 4, pp. 415-434 | MR | Zbl
[7] Threshold quantities for infectious diseases in periodic environments, J. Math. Biol., Volume 3 (1995) no. 3, pp. 779-787 | DOI
[8] The spectral radius of a product of nonnegative matrices, Linear Algebra Appl., Volume 141 (1990), pp. 227-240 | DOI | MR | Zbl
[9] Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer, 1966, xix+592 pages
[10] Effective perturbation theory for simple isolated eigenvalues of linear operators, J. Operator Theory, Volume 81 (2019) no. 1, pp. 175-194 | DOI | MR | Zbl
[11] A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution, Princeton University Press, 2011, x+732 pages | DOI
[12] Ordinary differential equations and dynamical systems, Graduate Studies in Mathematics, 140, American Mathematical Society, 2012, xii+356 pages | DOI
[13] Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equations, Volume 20 (2008) no. 3, pp. 699-717 | DOI | MR | Zbl
Cited by Sources: