Conformal Invariants of 3-Braids and Counting Functions
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 5, pp. 1323-1341.

We consider a conformal invariant of braids, the extremal length with totally real horizontal boundary values Λ tr . The invariant descends to an invariant of elements of n 𝒵 n , the braid group modulo its center. We prove that the number of elements of 3 𝒵 3 of positive Λ tr grows exponentially. The estimate applies to obtain effective finiteness theorems in the spirit of the geometric Shafarevich conjecture over Riemann surfaces of second kind. As a corollary we obtain another proof of the exponential growth of the number of conjugacy classes of 3 𝒵 3 with positive entropy not exceeding Y.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1721
Classification: 30F60, 30CXX, 37B40, 57MXX, 20F36
Keywords: Braids, extremal length, mapping classes, entropy, counting function

Burglind Jöricke 1

1 IHES, 35 Route de Chartres, 91440 Bures-sur-Yvette, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2022_6_31_5_1323_0,
     author = {Burglind J\"oricke},
     title = {Conformal {Invariants} of {3-Braids} and {Counting} {Functions}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1323--1341},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {5},
     year = {2022},
     doi = {10.5802/afst.1721},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1721/}
}
TY  - JOUR
AU  - Burglind Jöricke
TI  - Conformal Invariants of 3-Braids and Counting Functions
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 1323
EP  - 1341
VL  - 31
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1721/
DO  - 10.5802/afst.1721
LA  - en
ID  - AFST_2022_6_31_5_1323_0
ER  - 
%0 Journal Article
%A Burglind Jöricke
%T Conformal Invariants of 3-Braids and Counting Functions
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 1323-1341
%V 31
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1721/
%R 10.5802/afst.1721
%G en
%F AFST_2022_6_31_5_1323_0
Burglind Jöricke. Conformal Invariants of 3-Braids and Counting Functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 5, pp. 1323-1341. doi : 10.5802/afst.1721. https://afst.centre-mersenne.org/articles/10.5802/afst.1721/

[1] Roy L. Adler; Allan G. Konheim; M. H. McAndrew Topological entropy, Trans. Am. Math. Soc., Volume 114 (1965), pp. 309-319 | DOI | MR | Zbl

[2] Lars V. Ahlfors Lectures on quasiconformal mappings, Van Nostrand, 1966

[3] Alex Eskin; Maryam Mirzakhani Counting closed geodesics in moduli space, J. Mod. Dyn., Volume 5 (2011) no. 1, pp. 71-105 | DOI | MR | Zbl

[4] Travaux de Thurston sur les surfaces (Albert Fathi; François Laudenbach; Valentin Poénaru, eds.), Astérisque, 66-67, Société Mathématique de France, 1991 | DOI

[5] Burglind Jöricke Braids, Conformal Module, and Entropy (to appear in Lecture Notes in Mathematics)

[6] Burglind Jöricke Braids, conformal module and entropy, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 7-8, pp. 289-293 | DOI | MR | Zbl

[7] Burglind Jöricke Fundamental groups, slalom curves and extremal length, 50 years with Hardy spaces. A tribute to Victor Havin (Operator Theory: Advances and Applications), Volume 261, Birkhäuser, 2018, pp. 307-315 | DOI | MR | Zbl

[8] Burglind Jöricke Fundamental groups, 3-braids, and effective estimates of invariants, Math. Z., Volume 294 (2020) no. 3-4, pp. 1553-1609 | DOI | MR | Zbl

[9] Burglind Jöricke Riemann surfaces of second kind and effective finiteness theorems, Math. Z., Volume 302 (2022) no. 1, pp. 73-127 | DOI | MR | Zbl

[10] Shulim Kaliman; Mikhail Zaidenberg A transversality theorem for holomorphic mappings and stability of Eisenman–Kobayashi measures, Trans. Am. Math. Soc., Volume 348 (1996) no. 2, pp. 661-672 | DOI | Zbl

[11] William A. Veech The Teichmüller geodesic flow, Ann. Math., Volume 124 (1986) no. 3, pp. 441-530 | DOI | Zbl

Cited by Sources: