We consider a conformal invariant of braids, the extremal length with totally real horizontal boundary values
Accepté le :
Publié le :
Mots-clés : Braids, extremal length, mapping classes, entropy, counting function
Burglind Jöricke 1

@article{AFST_2022_6_31_5_1323_0, author = {Burglind J\"oricke}, title = {Conformal {Invariants} of {3-Braids} and {Counting} {Functions}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1323--1341}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {5}, year = {2022}, doi = {10.5802/afst.1721}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1721/} }
TY - JOUR AU - Burglind Jöricke TI - Conformal Invariants of 3-Braids and Counting Functions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 1323 EP - 1341 VL - 31 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1721/ DO - 10.5802/afst.1721 LA - en ID - AFST_2022_6_31_5_1323_0 ER -
%0 Journal Article %A Burglind Jöricke %T Conformal Invariants of 3-Braids and Counting Functions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 1323-1341 %V 31 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1721/ %R 10.5802/afst.1721 %G en %F AFST_2022_6_31_5_1323_0
Burglind Jöricke. Conformal Invariants of 3-Braids and Counting Functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 31 (2022) no. 5, pp. 1323-1341. doi : 10.5802/afst.1721. https://afst.centre-mersenne.org/articles/10.5802/afst.1721/
[1] Topological entropy, Trans. Am. Math. Soc., Volume 114 (1965), pp. 309-319 | DOI | MR | Zbl
[2] Lectures on quasiconformal mappings, Van Nostrand, 1966
[3] Counting closed geodesics in moduli space, J. Mod. Dyn., Volume 5 (2011) no. 1, pp. 71-105 | DOI | MR | Zbl
[4] Travaux de Thurston sur les surfaces (Albert Fathi; François Laudenbach; Valentin Poénaru, eds.), Astérisque, 66-67, Société Mathématique de France, 1991 | DOI
[5] Braids, Conformal Module, and Entropy (to appear in Lecture Notes in Mathematics)
[6] Braids, conformal module and entropy, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 7-8, pp. 289-293 | DOI | MR | Zbl
[7] Fundamental groups, slalom curves and extremal length, 50 years with Hardy spaces. A tribute to Victor Havin (Operator Theory: Advances and Applications), Volume 261, Birkhäuser, 2018, pp. 307-315 | DOI | MR | Zbl
[8] Fundamental groups, 3-braids, and effective estimates of invariants, Math. Z., Volume 294 (2020) no. 3-4, pp. 1553-1609 | DOI | MR | Zbl
[9] Riemann surfaces of second kind and effective finiteness theorems, Math. Z., Volume 302 (2022) no. 1, pp. 73-127 | DOI | MR | Zbl
[10] A transversality theorem for holomorphic mappings and stability of Eisenman–Kobayashi measures, Trans. Am. Math. Soc., Volume 348 (1996) no. 2, pp. 661-672 | DOI | Zbl
[11] The Teichmüller geodesic flow, Ann. Math., Volume 124 (1986) no. 3, pp. 441-530 | DOI | Zbl
Cité par Sources :