We consider a conformal invariant of braids, the extremal length with totally real horizontal boundary values . The invariant descends to an invariant of elements of , the braid group modulo its center. We prove that the number of elements of of positive grows exponentially. The estimate applies to obtain effective finiteness theorems in the spirit of the geometric Shafarevich conjecture over Riemann surfaces of second kind. As a corollary we obtain another proof of the exponential growth of the number of conjugacy classes of with positive entropy not exceeding .
Accepted:
Published online:
Keywords: Braids, extremal length, mapping classes, entropy, counting function
Burglind Jöricke 1
@article{AFST_2022_6_31_5_1323_0, author = {Burglind J\"oricke}, title = {Conformal {Invariants} of {3-Braids} and {Counting} {Functions}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1323--1341}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {5}, year = {2022}, doi = {10.5802/afst.1721}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1721/} }
TY - JOUR AU - Burglind Jöricke TI - Conformal Invariants of 3-Braids and Counting Functions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 1323 EP - 1341 VL - 31 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1721/ DO - 10.5802/afst.1721 LA - en ID - AFST_2022_6_31_5_1323_0 ER -
%0 Journal Article %A Burglind Jöricke %T Conformal Invariants of 3-Braids and Counting Functions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 1323-1341 %V 31 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1721/ %R 10.5802/afst.1721 %G en %F AFST_2022_6_31_5_1323_0
Burglind Jöricke. Conformal Invariants of 3-Braids and Counting Functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 5, pp. 1323-1341. doi : 10.5802/afst.1721. https://afst.centre-mersenne.org/articles/10.5802/afst.1721/
[1] Topological entropy, Trans. Am. Math. Soc., Volume 114 (1965), pp. 309-319 | DOI | MR | Zbl
[2] Lectures on quasiconformal mappings, Van Nostrand, 1966
[3] Counting closed geodesics in moduli space, J. Mod. Dyn., Volume 5 (2011) no. 1, pp. 71-105 | DOI | MR | Zbl
[4] Travaux de Thurston sur les surfaces (Albert Fathi; François Laudenbach; Valentin Poénaru, eds.), Astérisque, 66-67, Société Mathématique de France, 1991 | DOI
[5] Braids, Conformal Module, and Entropy (to appear in Lecture Notes in Mathematics)
[6] Braids, conformal module and entropy, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 7-8, pp. 289-293 | DOI | MR | Zbl
[7] Fundamental groups, slalom curves and extremal length, 50 years with Hardy spaces. A tribute to Victor Havin (Operator Theory: Advances and Applications), Volume 261, Birkhäuser, 2018, pp. 307-315 | DOI | MR | Zbl
[8] Fundamental groups, 3-braids, and effective estimates of invariants, Math. Z., Volume 294 (2020) no. 3-4, pp. 1553-1609 | DOI | MR | Zbl
[9] Riemann surfaces of second kind and effective finiteness theorems, Math. Z., Volume 302 (2022) no. 1, pp. 73-127 | DOI | MR | Zbl
[10] A transversality theorem for holomorphic mappings and stability of Eisenman–Kobayashi measures, Trans. Am. Math. Soc., Volume 348 (1996) no. 2, pp. 661-672 | DOI | Zbl
[11] The Teichmüller geodesic flow, Ann. Math., Volume 124 (1986) no. 3, pp. 441-530 | DOI | Zbl
Cited by Sources: