Conformal Invariants of 3-Braids and Counting Functions
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 31 (2022) no. 5, pp. 1323-1341.

We consider a conformal invariant of braids, the extremal length with totally real horizontal boundary values Λtr. The invariant descends to an invariant of elements of n𝒵n, the braid group modulo its center. We prove that the number of elements of 3𝒵3 of positive Λtr grows exponentially. The estimate applies to obtain effective finiteness theorems in the spirit of the geometric Shafarevich conjecture over Riemann surfaces of second kind. As a corollary we obtain another proof of the exponential growth of the number of conjugacy classes of 3𝒵3 with positive entropy not exceeding Y.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1721
Classification : 30F60, 30CXX, 37B40, 57MXX, 20F36
Mots-clés : Braids, extremal length, mapping classes, entropy, counting function

Burglind Jöricke 1

1 IHES, 35 Route de Chartres, 91440 Bures-sur-Yvette, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2022_6_31_5_1323_0,
     author = {Burglind J\"oricke},
     title = {Conformal {Invariants} of {3-Braids} and {Counting} {Functions}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1323--1341},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 31},
     number = {5},
     year = {2022},
     doi = {10.5802/afst.1721},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1721/}
}
TY  - JOUR
AU  - Burglind Jöricke
TI  - Conformal Invariants of 3-Braids and Counting Functions
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2022
SP  - 1323
EP  - 1341
VL  - 31
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1721/
DO  - 10.5802/afst.1721
LA  - en
ID  - AFST_2022_6_31_5_1323_0
ER  - 
%0 Journal Article
%A Burglind Jöricke
%T Conformal Invariants of 3-Braids and Counting Functions
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2022
%P 1323-1341
%V 31
%N 5
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1721/
%R 10.5802/afst.1721
%G en
%F AFST_2022_6_31_5_1323_0
Burglind Jöricke. Conformal Invariants of 3-Braids and Counting Functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 31 (2022) no. 5, pp. 1323-1341. doi : 10.5802/afst.1721. https://afst.centre-mersenne.org/articles/10.5802/afst.1721/

[1] Roy L. Adler; Allan G. Konheim; M. H. McAndrew Topological entropy, Trans. Am. Math. Soc., Volume 114 (1965), pp. 309-319 | DOI | MR | Zbl

[2] Lars V. Ahlfors Lectures on quasiconformal mappings, Van Nostrand, 1966

[3] Alex Eskin; Maryam Mirzakhani Counting closed geodesics in moduli space, J. Mod. Dyn., Volume 5 (2011) no. 1, pp. 71-105 | DOI | MR | Zbl

[4] Travaux de Thurston sur les surfaces (Albert Fathi; François Laudenbach; Valentin Poénaru, eds.), Astérisque, 66-67, Société Mathématique de France, 1991 | DOI

[5] Burglind Jöricke Braids, Conformal Module, and Entropy (to appear in Lecture Notes in Mathematics)

[6] Burglind Jöricke Braids, conformal module and entropy, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 7-8, pp. 289-293 | DOI | MR | Zbl

[7] Burglind Jöricke Fundamental groups, slalom curves and extremal length, 50 years with Hardy spaces. A tribute to Victor Havin (Operator Theory: Advances and Applications), Volume 261, Birkhäuser, 2018, pp. 307-315 | DOI | MR | Zbl

[8] Burglind Jöricke Fundamental groups, 3-braids, and effective estimates of invariants, Math. Z., Volume 294 (2020) no. 3-4, pp. 1553-1609 | DOI | MR | Zbl

[9] Burglind Jöricke Riemann surfaces of second kind and effective finiteness theorems, Math. Z., Volume 302 (2022) no. 1, pp. 73-127 | DOI | MR | Zbl

[10] Shulim Kaliman; Mikhail Zaidenberg A transversality theorem for holomorphic mappings and stability of Eisenman–Kobayashi measures, Trans. Am. Math. Soc., Volume 348 (1996) no. 2, pp. 661-672 | DOI | Zbl

[11] William A. Veech The Teichmüller geodesic flow, Ann. Math., Volume 124 (1986) no. 3, pp. 441-530 | DOI | Zbl

Cité par Sources :