Let , be an open set. For an elliptic differential operator on with real analytic coefficients and a point , we construct a smooth function with the following properties: is flat at and the equation has no smooth local solution that is flat at .
Soit , un ensemble ouvert. Pour un opérateur différentiel elliptique sur avec des coefficients analytiques réels et un point , nous construisons une fonction lisse avec les propriétés suivantes : est plat en et l’équation n’a pas de solution locale lisse qui est plate en .
Accepted:
Published online:
Keywords: Elliptic operators, flat functions
Martino Fassina 1; Yifei Pan 2
@article{AFST_2022_6_31_5_1343_0, author = {Martino Fassina and Yifei Pan}, title = {A local obstruction for elliptic operators with real analytic coefficients on flat germs}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1343--1363}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 31}, number = {5}, year = {2022}, doi = {10.5802/afst.1722}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1722/} }
TY - JOUR AU - Martino Fassina AU - Yifei Pan TI - A local obstruction for elliptic operators with real analytic coefficients on flat germs JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2022 SP - 1343 EP - 1363 VL - 31 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1722/ DO - 10.5802/afst.1722 LA - en ID - AFST_2022_6_31_5_1343_0 ER -
%0 Journal Article %A Martino Fassina %A Yifei Pan %T A local obstruction for elliptic operators with real analytic coefficients on flat germs %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2022 %P 1343-1363 %V 31 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1722/ %R 10.5802/afst.1722 %G en %F AFST_2022_6_31_5_1343_0
Martino Fassina; Yifei Pan. A local obstruction for elliptic operators with real analytic coefficients on flat germs. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 31 (2022) no. 5, pp. 1343-1363. doi : 10.5802/afst.1722. https://afst.centre-mersenne.org/articles/10.5802/afst.1722/
[1] Sur quelques points de la théorie des fonctions, Ann. Sci. Éc. Norm. Supér., Volume 12 (1895), pp. 9-55 | DOI | Numdam | Zbl
[2] Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astron. Fysik B, Volume 26 (1939) no. 17, pp. 1-9 | MR | Zbl
[3] Examples of flat solutions to the Cauchy-Riemann equations (2015) (unpublished note)
[4] Smooth counterexamples to strong unique continuation for a Beltrami system in , Commun. Partial Differ. Equations, Volume 37 (2012) no. 10-12, pp. 2228-2244 | DOI | MR | Zbl
[5] Remarks on the global distribution of the points of finite D’Angelo type (in preparation)
[6] Linear partial differential operators, Grundlehren der Mathematischen Wissenschaften, 116, Academic Press Inc., 1963 | DOI | Zbl
[7] Solving with prescribed support on Hartogs triangles in and , Trans. Am. Math. Soc., Volume 371 (2019) no. 9, pp. 6531-6546 | DOI | MR | Zbl
[8] An example of a smooth linear partial differential equation without solution, Ann. Math., Volume 66 (1957), pp. 155-158 | DOI | MR | Zbl
[9] On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. I. Analyticity in the interior, Am. J. Math., Volume 80 (1958), pp. 198-218 | DOI | MR | Zbl
[10] On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. II. Analyticity at the boundary, Am. J. Math., Volume 80 (1958), pp. 219-237 | DOI | MR | Zbl
[11] On the analyticity of the solutions of linear elliptic systems of partial differential equations, Commun. Pure Appl. Math., Volume 10 (1957), pp. 271-290 | DOI | MR | Zbl
[12] Analysis on real and complex manifolds, North-Holland Mathematical Library, 35, North-Holland, 1985
[13] On Elliptic Partial Differential Equations, Il principio di minimo e sue applicazioni alle equazioni funzionali (Sandro Faedo, ed.) (CIME Summer Schools), Volume 17, Springer, 2011 (reprint of the 1958 original) | DOI
[14] Unique continuation for Schrödinger operators with singular potentials, Commun. Partial Differ. Equations, Volume 17 (1992) no. 5-6, pp. 953-965 | Zbl
[15] A remark on unique continuation, J. Geom. Anal., Volume 8 (1998) no. 4, pp. 599-604 | MR | Zbl
[16] Sur l’analyticité des solutions des systèmes d’équations différentielles, Rec. Math. N. S., Volume 47 (1939), pp. 3-70 | Zbl
[17] Unique continuation for elliptic equations, Trans. Am. Math. Soc., Volume 95 (1960), pp. 81-91 | DOI | MR | Zbl
[18] Homogeneous polynomial solutions to constant coefficient, Adv. Math., Volume 117 (1996) no. 2, pp. 179-192 | DOI | MR | Zbl
[19] Introduction to further topics in analysis, Princeton Lectures in Analysis, 4, Princeton University Press, 2011 | DOI
Cited by Sources: