We give a simple proof of a recent result due to Agostiniani, Fogagnolo and Mazzieri [1].
Nous donnons une preuve simple d’un résultat récent dû à Agostiniani, Fogagnolo and Mazzieri [1].
Accepted:
Published online:
Xiaodong Wang 1
@article{AFST_2023_6_32_1_173_0, author = {Xiaodong Wang}, title = {Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative {Ricci} curvature}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {173--178}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {1}, year = {2023}, doi = {10.5802/afst.1733}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1733/} }
TY - JOUR AU - Xiaodong Wang TI - Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative Ricci curvature JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 173 EP - 178 VL - 32 IS - 1 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1733/ DO - 10.5802/afst.1733 LA - en ID - AFST_2023_6_32_1_173_0 ER -
%0 Journal Article %A Xiaodong Wang %T Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative Ricci curvature %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 173-178 %V 32 %N 1 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1733/ %R 10.5802/afst.1733 %G en %F AFST_2023_6_32_1_173_0
Xiaodong Wang. Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative Ricci curvature. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 173-178. doi : 10.5802/afst.1733. https://afst.centre-mersenne.org/articles/10.5802/afst.1733/
[1] Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature, Invent. Math., Volume 222 (2020) no. 3, pp. 1033-1101 | DOI | MR | Zbl
[2] Vanishing sectional curvature on the boundary and a conjecture of Schroeder and Strake, Pac. J. Math., Volume 232 (2007) no. 2, pp. 283-287 | DOI | MR | Zbl
[3] A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 4, pp. 451-470 | DOI | Numdam | MR | Zbl
[4] Riemannian manifolds with compact boundary, Yokohama Math. J., Volume 29 (1981) no. 2, pp. 169-177 | MR | Zbl
[5] Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary, J. Math. Soc. Japan, Volume 35 (1983) no. 1, pp. 117-131 | MR | Zbl
[6] Riemannian Geometry, Graduate Texts in Mathematics, 171, Springer, 2016 | DOI
[7] Riemannian geometry, Translations of Mathematical Monographs, 149, American Mathematical Society, 1996 | DOI
Cited by Sources: