Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative Ricci curvature
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 173-178.

We give a simple proof of a recent result due to Agostiniani, Fogagnolo and Mazzieri [1].

Nous donnons une preuve simple d’un résultat récent dû à Agostiniani, Fogagnolo and Mazzieri [1].

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1733

Xiaodong Wang 1

1 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_1_173_0,
     author = {Xiaodong Wang},
     title = {Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative {Ricci} curvature},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {173--178},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {1},
     year = {2023},
     doi = {10.5802/afst.1733},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1733/}
}
TY  - JOUR
AU  - Xiaodong Wang
TI  - Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative Ricci curvature
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 173
EP  - 178
VL  - 32
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1733/
DO  - 10.5802/afst.1733
LA  - en
ID  - AFST_2023_6_32_1_173_0
ER  - 
%0 Journal Article
%A Xiaodong Wang
%T Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative Ricci curvature
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 173-178
%V 32
%N 1
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1733/
%R 10.5802/afst.1733
%G en
%F AFST_2023_6_32_1_173_0
Xiaodong Wang. Remark on an inequality for closed hypersurfaces in complete manifolds with nonnegative Ricci curvature. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 1, pp. 173-178. doi : 10.5802/afst.1733. https://afst.centre-mersenne.org/articles/10.5802/afst.1733/

[1] Virginia Agostiniani; Mattia Fogagnolo; Lorenzo Mazzieri Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature, Invent. Math., Volume 222 (2020) no. 3, pp. 1033-1101 | DOI | MR | Zbl

[2] Fengbo Hang; Xiaodong Wang Vanishing sectional curvature on the boundary and a conjecture of Schroeder and Strake, Pac. J. Math., Volume 232 (2007) no. 2, pp. 283-287 | DOI | MR | Zbl

[3] Ernst Heintze; Hermann Karcher A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 4, pp. 451-470 | DOI | Numdam | MR | Zbl

[4] Ryosuke Ichida Riemannian manifolds with compact boundary, Yokohama Math. J., Volume 29 (1981) no. 2, pp. 169-177 | MR | Zbl

[5] Atsushi Kasue Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary, J. Math. Soc. Japan, Volume 35 (1983) no. 1, pp. 117-131 | MR | Zbl

[6] Peter Petersen Riemannian Geometry, Graduate Texts in Mathematics, 171, Springer, 2016 | DOI

[7] Takashi Sakai Riemannian geometry, Translations of Mathematical Monographs, 149, American Mathematical Society, 1996 | DOI

Cited by Sources: