Realisation of Abelian varieties as automorphism groups
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 623-638.

Let A be an Abelian variety over a field F. We show that A is isomorphic to the automorphism group scheme of a smooth projective F-variety if, and only if, Aut gp (A ¯) is finite. This result was proved by Lombardo and Maffei [6] in the case F=, and recently by Blanc and Brion [1] in the case of an algebraically closed F.

Soit A une variété abélienne sur un corps F. On montre que A est isomorphe au schéma en groupes des automorphismes d’une F-variété projective et lisse, si et seulement si le groupe des F ¯-automorphismes de A est fini. Ce résultat est dû à Lombardo et Maffei [6] lorsque F=. Il est dû à Blanc et Brion [1] lorsque F=F ¯.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1747

Mathieu Florence 1

1 Sorbonne Université and Université Paris Cité, CNRS, IMJ-PRG, F-75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_4_623_0,
     author = {Mathieu Florence},
     title = {Realisation of {Abelian} varieties as automorphism groups},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {623--638},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {4},
     year = {2023},
     doi = {10.5802/afst.1747},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1747/}
}
TY  - JOUR
AU  - Mathieu Florence
TI  - Realisation of Abelian varieties as automorphism groups
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 623
EP  - 638
VL  - 32
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1747/
DO  - 10.5802/afst.1747
LA  - en
ID  - AFST_2023_6_32_4_623_0
ER  - 
%0 Journal Article
%A Mathieu Florence
%T Realisation of Abelian varieties as automorphism groups
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 623-638
%V 32
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1747/
%R 10.5802/afst.1747
%G en
%F AFST_2023_6_32_4_623_0
Mathieu Florence. Realisation of Abelian varieties as automorphism groups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 623-638. doi : 10.5802/afst.1747. https://afst.centre-mersenne.org/articles/10.5802/afst.1747/

[1] Jérémy Blanc; Michel Brion Abelian varieties as automorphism groups of smooth projective varieties in arbitrary characteristics (preprint, http://www-fourier.univ-grenoble-alpes.fr/~mbrion/abelian.pdf)

[2] Michel Brion Homomorphisms of algebraic groups: representability and rigidity, Mich. Math. J., Volume 72 (2022), pp. 51-76 | MR | Zbl

[3] François Charles; Bjorn Poonen Bertini irreducibility theorems over finite fields, J. Am. Math. Soc., Volume 29 (2016) no. 1, pp. 81-94 | DOI | MR | Zbl

[4] Michel Demazure; Pierre Gabriel Groupes algébriques, Masson, 1970

[5] Everett W. Howe; Hui June Zhu On the Existence of Absolutely Simple Abelian Varieties of a Given Dimension over an Arbitrary Field, J. Number Theory, Volume 92 (2002) no. 1, pp. 139-163 | DOI | MR | Zbl

[6] Davide Lombardo; Andrea Maffei Abelian varieties as automorphism groups of smooth projective varieties, Int. Math. Res. Not., Volume 2020 (2020) no. 7, pp. 1921-1932 | MR | Zbl

[7] Gebhard Martin Infinitesimal automorphisms of algebraic varieties and vector fields on elliptic surfaces (2020) | arXiv

[8] Hideyuki Matsumura; Frans Oort Representability of group functors, and automorphisms of algebraic schemes, Invent. Math., Volume 4 (1967), pp. 1-25 | DOI | MR | Zbl

[9] Shigefumi Mori The endomorphism rings of some abelian varieties, Jpn. J. Math., Volume 3 (1977), pp. 105-109 | DOI | MR | Zbl

[10] Bjorn Poonen Bertini theorems over finite fields, Ann. Math., Volume 160 (2005) no. 3, pp. 1099-1127 | DOI | MR | Zbl

Cited by Sources: