Let be an Abelian variety over a field . We show that is isomorphic to the automorphism group scheme of a smooth projective -variety if, and only if, is finite. This result was proved by Lombardo and Maffei [6] in the case , and recently by Blanc and Brion [1] in the case of an algebraically closed .
Soit une variété abélienne sur un corps . On montre que est isomorphe au schéma en groupes des automorphismes d’une -variété projective et lisse, si et seulement si le groupe des -automorphismes de est fini. Ce résultat est dû à Lombardo et Maffei [6] lorsque . Il est dû à Blanc et Brion [1] lorsque .
Accepted:
Published online:
Mathieu Florence 1
@article{AFST_2023_6_32_4_623_0, author = {Mathieu Florence}, title = {Realisation of {Abelian} varieties as automorphism groups}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {623--638}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {4}, year = {2023}, doi = {10.5802/afst.1747}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1747/} }
TY - JOUR AU - Mathieu Florence TI - Realisation of Abelian varieties as automorphism groups JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 623 EP - 638 VL - 32 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1747/ DO - 10.5802/afst.1747 LA - en ID - AFST_2023_6_32_4_623_0 ER -
%0 Journal Article %A Mathieu Florence %T Realisation of Abelian varieties as automorphism groups %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 623-638 %V 32 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1747/ %R 10.5802/afst.1747 %G en %F AFST_2023_6_32_4_623_0
Mathieu Florence. Realisation of Abelian varieties as automorphism groups. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 623-638. doi : 10.5802/afst.1747. https://afst.centre-mersenne.org/articles/10.5802/afst.1747/
[1] Abelian varieties as automorphism groups of smooth projective varieties in arbitrary characteristics (preprint, http://www-fourier.univ-grenoble-alpes.fr/~mbrion/abelian.pdf)
[2] Homomorphisms of algebraic groups: representability and rigidity, Mich. Math. J., Volume 72 (2022), pp. 51-76 | MR | Zbl
[3] Bertini irreducibility theorems over finite fields, J. Am. Math. Soc., Volume 29 (2016) no. 1, pp. 81-94 | DOI | MR | Zbl
[4] Groupes algébriques, Masson, 1970
[5] On the Existence of Absolutely Simple Abelian Varieties of a Given Dimension over an Arbitrary Field, J. Number Theory, Volume 92 (2002) no. 1, pp. 139-163 | DOI | MR | Zbl
[6] Abelian varieties as automorphism groups of smooth projective varieties, Int. Math. Res. Not., Volume 2020 (2020) no. 7, pp. 1921-1932 | MR | Zbl
[7] Infinitesimal automorphisms of algebraic varieties and vector fields on elliptic surfaces (2020) | arXiv
[8] Representability of group functors, and automorphisms of algebraic schemes, Invent. Math., Volume 4 (1967), pp. 1-25 | DOI | MR | Zbl
[9] The endomorphism rings of some abelian varieties, Jpn. J. Math., Volume 3 (1977), pp. 105-109 | DOI | MR | Zbl
[10] Bertini theorems over finite fields, Ann. Math., Volume 160 (2005) no. 3, pp. 1099-1127 | DOI | MR | Zbl
Cited by Sources: