We define new compact matrix quantum groups whose intertwiner spaces are dual to tensor categories of three-dimensional set partitions (which we call spatial partitions). This extends substantially Banica and Speicher’s approach of the so called easy quantum groups: It enables us to find new examples of quantum subgroups of Wang’s free orthogonal quantum group which do not contain the symmetric group ; we may define new kinds of products of quantum groups coming from new products of categories of partitions; and we give a quantum group interpretation of certain categories of partitions which do neither contain the pair partition nor the identity partition.
Nous définissons de nouveaux groupes quantiques compacts de matrices dont les espaces d’entrelaceurs sont en dualité avec des catégories tensorielles de partitions d’ensembles tri-dimensionels (que nous appelons partitions spatiales). Cela généralise de manière conséquente l’approche de Banica et Speicher dite des groupes quantiques « easy » : cela nous permet d’exhiber de nouveaux exemples de sous-groupes quantiques du groupe quantique orthogonal libre de Wang qui ne contiennent pas le groupe symétrique ; nous pouvons définir de nouveaux types de produits de groupes quantiques, venant de nouveaux produits de catégories de partitions ; et nous donnons une interprétation en terme de groupe quantique de certaines catégories de partitions qui ne contiennent ni la partition paire, ni la partition identité.
Accepted:
Published online:
Keywords: set partitions, three-dimensional partitions, spatial partitions, compact matrix quantum groups, easy quantum groups, partition quantum groups, Banica–Speicher quantum groups, free orthogonal quantum groups, tensor categories, Kronecker product
Guillaume Cébron 1; Moritz Weber 2
@article{AFST_2023_6_32_4_727_0, author = {Guillaume C\'ebron and Moritz Weber}, title = {Quantum groups based on spatial partitions}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {727--768}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 32}, number = {4}, year = {2023}, doi = {10.5802/afst.1750}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1750/} }
TY - JOUR AU - Guillaume Cébron AU - Moritz Weber TI - Quantum groups based on spatial partitions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2023 SP - 727 EP - 768 VL - 32 IS - 4 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1750/ DO - 10.5802/afst.1750 LA - en ID - AFST_2023_6_32_4_727_0 ER -
%0 Journal Article %A Guillaume Cébron %A Moritz Weber %T Quantum groups based on spatial partitions %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2023 %P 727-768 %V 32 %N 4 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1750/ %R 10.5802/afst.1750 %G en %F AFST_2023_6_32_4_727_0
Guillaume Cébron; Moritz Weber. Quantum groups based on spatial partitions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 727-768. doi : 10.5802/afst.1750. https://afst.centre-mersenne.org/articles/10.5802/afst.1750/
[1] Symmetries of a generic coaction, Math. Ann., Volume 314 (1999) no. 4, pp. 763-780 | DOI | MR | Zbl
[2] De Finetti theorems for easy quantum groups, Ann. Probab., Volume 40 (2012) no. 1, pp. 401-435 | MR | Zbl
[3] Liberation of orthogonal Lie groups, Adv. Math., Volume 222 (2009) no. 4, pp. 1461-1501 | DOI | MR | Zbl
[4] Approximation properties for free orthogonal and free unitary quantum groups, J. Reine Angew. Math., Volume 672 (2012), pp. 223-251 | MR | Zbl
[5] Reduced operator algebras of trace-preserving quantum automorphism groups, Doc. Math., Volume 18 (2013), pp. 1349-1402 | DOI | Zbl
[6] Fusion (semi)rings arising from quantum groups, J. Algebra, Volume 417 (2014), pp. 161-197 | DOI | MR | Zbl
[7] On two-coloured noncrossing partition quantum groups, Trans. Am. Math. Soc., Volume 320 (2019), pp. 4471-4508 | DOI | MR | Zbl
[8] On the representation theory of partition (easy) quantum groups, J. Reine Angew. Math., Volume 720 (2016), pp. 155-197 | DOI | MR | Zbl
[9] Classification of globally colorized categories of partitions, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 21 (2018) no. 4, 1850029, 25 pages | MR | Zbl
[10] Intertwiner spaces of quantum group subrepresentations, Commun. Math. Phys., Volume 376 (2020) no. 1, pp. 81-115 | DOI | MR | Zbl
[11] Partition quantum spaces, J. Noncommut. Geom., Volume 14 (2020) no. 3, pp. 821-859 | DOI | MR | Zbl
[12] A noncommutative de Finetti theorem: invariance under quantum permutations is equivalent to freeness with amalgamation, Commun. Math. Phys., Volume 291 (2009) no. 2, pp. 473-490 | DOI | MR | Zbl
[13] The fusion rules of some free wreath product quantum groups and applications, J. Funct. Anal., Volume 267 (2014) no. 7, pp. 2507-2550 | DOI | MR | Zbl
[14] Free wreath product quantum groups: the monoidal category, approximation properties and free probability, J. Funct. Anal., Volume 270 (2016) no. 10, pp. 3828-3883 | DOI | MR | Zbl
[15] The intertwiner spaces of non-easy group-theoretical quantum groups, J. Noncommut. Geom., Volume 14 (2020) no. 3, pp. 987-1017 | DOI | MR | Zbl
[16] Woronowicz’s Tannaka–Krein duality and free orthogonal quantum groups, Math. Scand., Volume 122 (2018), p. 151-106 | DOI | MR | Zbl
[17] Categories of two-colored pair partitions. Part II: Categories indexed by semigroups, J. Comb. Theory, Ser. A, Volume 180 (2021), 105409, 44 pages | MR | Zbl
[18] Quantum automorphism groups and -deformations, J. Pure Appl. Algebra, Volume 219 (2015) no. 1, pp. 1-32 | DOI | MR | Zbl
[19] Compact quantum groups and their representation categories, Cours Spécialisés (Paris), Société Mathématique de France, 2013
[20] Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, 335, London Mathematical Society, 2006 | DOI
[21] Easy quantum groups and quantum subgroups of a semi-direct product quantum group, J. Noncommut. Geom., Volume 9 (2015) no. 4, pp. 1261-1293 | DOI | MR | Zbl
[22] The full classification of orthogonal easy quantum groups, Commun. Math. Phys., Volume 341 (2016) no. 3, pp. 751-779 | DOI | MR | Zbl
[23] Quantum groups with partial commutation relations, Indiana Univ. Math. J., Volume 68 (2019) no. 6, pp. 1849-1883 | DOI | MR | Zbl
[24] Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, 2012
[25] Unitary easy quantum groups: the free case and the group case, Int. Math. Res. Not., Volume 18 (2017), pp. 5710-5750 | Zbl
[26] The classification of tensor categories of two-colored noncrossing partitions, J. Comb. Theory, Ser. A, Volume 154 (2018), pp. 464-506 | DOI | MR | Zbl
[27] An invitation to quantum groups and duality: From Hopf algebras to multiplicative unitaries and beyond, EMS Textbooks in Mathematics, European Mathematical Society, 2008 | DOI
[28] Free probability and operator algebras, Münster Lectures in Mathematics, European Mathematical Society, 2016
[29] Free products of compact quantum groups, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692 | DOI | MR | Zbl
[30] Tensor products and crossed products of compact quantum groups, Proc. Lond. Math. Soc., Volume 71 (1995) no. 3, pp. 695-720 | DOI | MR | Zbl
[31] Quantum symmetry groups of finite spaces, Commun. Math. Phys., Volume 195 (1998) no. 1, pp. 195-211 | DOI | MR | Zbl
[32] On the classification of easy quantum groups, Adv. Math., Volume 245 (2013), pp. 500-533 | DOI | MR | Zbl
[33] Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987) no. 4, pp. 613-665 | DOI | MR | Zbl
[34] Tannaka–Krein duality for compact matrix pseudogroups. Twisted groups, Invent. Math., Volume 93 (1988) no. 1, pp. 35-76 | DOI | MR | Zbl
[35] A remark on compact matrix quantum groups, Lett. Math. Phys., Volume 21 (1991) no. 1, pp. 35-39 | DOI | MR | Zbl
Cited by Sources: