Quantum groups based on spatial partitions
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 727-768.

We define new compact matrix quantum groups whose intertwiner spaces are dual to tensor categories of three-dimensional set partitions (which we call spatial partitions). This extends substantially Banica and Speicher’s approach of the so called easy quantum groups: It enables us to find new examples of quantum subgroups of Wang’s free orthogonal quantum group O n + which do not contain the symmetric group S n ; we may define new kinds of products of quantum groups coming from new products of categories of partitions; and we give a quantum group interpretation of certain categories of partitions which do neither contain the pair partition nor the identity partition.

Nous définissons de nouveaux groupes quantiques compacts de matrices dont les espaces d’entrelaceurs sont en dualité avec des catégories tensorielles de partitions d’ensembles tri-dimensionels (que nous appelons partitions spatiales). Cela généralise de manière conséquente l’approche de Banica et Speicher dite des groupes quantiques « easy » : cela nous permet d’exhiber de nouveaux exemples de sous-groupes quantiques du groupe quantique orthogonal libre O n + de Wang qui ne contiennent pas le groupe symétrique S n  ; nous pouvons définir de nouveaux types de produits de groupes quantiques, venant de nouveaux produits de catégories de partitions ; et nous donnons une interprétation en terme de groupe quantique de certaines catégories de partitions qui ne contiennent ni la partition paire, ni la partition identité.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1750
Classification: 20G42, 05A18, 05E10, 46L54
Keywords: set partitions, three-dimensional partitions, spatial partitions, compact matrix quantum groups, easy quantum groups, partition quantum groups, Banica–Speicher quantum groups, free orthogonal quantum groups, tensor categories, Kronecker product

Guillaume Cébron 1; Moritz Weber 2

1 Institut de Mathématiques de Toulouse; UMR5219; Université de Toulouse; CNRS; UPS, 31062 Toulouse, France
2 Saarland University, Fachbereich Mathematik, Postfach 151150, 66041 Saarbrücken, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AFST_2023_6_32_4_727_0,
     author = {Guillaume C\'ebron and Moritz Weber},
     title = {Quantum groups based on spatial partitions},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {727--768},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 32},
     number = {4},
     year = {2023},
     doi = {10.5802/afst.1750},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1750/}
}
TY  - JOUR
AU  - Guillaume Cébron
AU  - Moritz Weber
TI  - Quantum groups based on spatial partitions
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2023
SP  - 727
EP  - 768
VL  - 32
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1750/
DO  - 10.5802/afst.1750
LA  - en
ID  - AFST_2023_6_32_4_727_0
ER  - 
%0 Journal Article
%A Guillaume Cébron
%A Moritz Weber
%T Quantum groups based on spatial partitions
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2023
%P 727-768
%V 32
%N 4
%I Université Paul Sabatier, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1750/
%R 10.5802/afst.1750
%G en
%F AFST_2023_6_32_4_727_0
Guillaume Cébron; Moritz Weber. Quantum groups based on spatial partitions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 32 (2023) no. 4, pp. 727-768. doi : 10.5802/afst.1750. https://afst.centre-mersenne.org/articles/10.5802/afst.1750/

[1] Teodor Banica Symmetries of a generic coaction, Math. Ann., Volume 314 (1999) no. 4, pp. 763-780 | DOI | MR | Zbl

[2] Teodor Banica; Stephen Curran; Roland Speicher De Finetti theorems for easy quantum groups, Ann. Probab., Volume 40 (2012) no. 1, pp. 401-435 | MR | Zbl

[3] Teodor Banica; Roland Speicher Liberation of orthogonal Lie groups, Adv. Math., Volume 222 (2009) no. 4, pp. 1461-1501 | DOI | MR | Zbl

[4] Michael Brannan Approximation properties for free orthogonal and free unitary quantum groups, J. Reine Angew. Math., Volume 672 (2012), pp. 223-251 | MR | Zbl

[5] Michael Brannan Reduced operator algebras of trace-preserving quantum automorphism groups, Doc. Math., Volume 18 (2013), pp. 1349-1402 | DOI | Zbl

[6] Amaury Freslon Fusion (semi)rings arising from quantum groups, J. Algebra, Volume 417 (2014), pp. 161-197 | DOI | MR | Zbl

[7] Amaury Freslon On two-coloured noncrossing partition quantum groups, Trans. Am. Math. Soc., Volume 320 (2019), pp. 4471-4508 | DOI | MR | Zbl

[8] Amaury Freslon; Moritz Weber On the representation theory of partition (easy) quantum groups, J. Reine Angew. Math., Volume 720 (2016), pp. 155-197 | DOI | MR | Zbl

[9] Daniel Gromada Classification of globally colorized categories of partitions, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 21 (2018) no. 4, 1850029, 25 pages | MR | Zbl

[10] Daniel Gromada; Moritz Weber Intertwiner spaces of quantum group subrepresentations, Commun. Math. Phys., Volume 376 (2020) no. 1, pp. 81-115 | DOI | MR | Zbl

[11] Stefan Jung; Moritz Weber Partition quantum spaces, J. Noncommut. Geom., Volume 14 (2020) no. 3, pp. 821-859 | DOI | MR | Zbl

[12] Claus Köstler; Roland Speicher A noncommutative de Finetti theorem: invariance under quantum permutations is equivalent to freeness with amalgamation, Commun. Math. Phys., Volume 291 (2009) no. 2, pp. 473-490 | DOI | MR | Zbl

[13] François Lemeux The fusion rules of some free wreath product quantum groups and applications, J. Funct. Anal., Volume 267 (2014) no. 7, pp. 2507-2550 | DOI | MR | Zbl

[14] François Lemeux; Pierre Tarrago Free wreath product quantum groups: the monoidal category, approximation properties and free probability, J. Funct. Anal., Volume 270 (2016) no. 10, pp. 3828-3883 | DOI | MR | Zbl

[15] Laura Maaßen The intertwiner spaces of non-easy group-theoretical quantum groups, J. Noncommut. Geom., Volume 14 (2020) no. 3, pp. 987-1017 | DOI | MR | Zbl

[16] Sara Malacarne Woronowicz’s Tannaka–Krein duality and free orthogonal quantum groups, Math. Scand., Volume 122 (2018), p. 151-106 | DOI | MR | Zbl

[17] Alexander Mang; Moritz Weber Categories of two-colored pair partitions. Part II: Categories indexed by semigroups, J. Comb. Theory, Ser. A, Volume 180 (2021), 105409, 44 pages | MR | Zbl

[18] Colin Mrozinski Quantum automorphism groups and so(3)-deformations, J. Pure Appl. Algebra, Volume 219 (2015) no. 1, pp. 1-32 | DOI | MR | Zbl

[19] Sergey Neshveyev; Lars Tuset Compact quantum groups and their representation categories, Cours Spécialisés (Paris), Société Mathématique de France, 2013

[20] Alexandru Nica; Roland Speicher Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, 335, London Mathematical Society, 2006 | DOI

[21] Sven Raum; Moritz Weber Easy quantum groups and quantum subgroups of a semi-direct product quantum group, J. Noncommut. Geom., Volume 9 (2015) no. 4, pp. 1261-1293 | DOI | MR | Zbl

[22] Sven Raum; Moritz Weber The full classification of orthogonal easy quantum groups, Commun. Math. Phys., Volume 341 (2016) no. 3, pp. 751-779 | DOI | MR | Zbl

[23] Roland Speicher; Moritz Weber Quantum groups with partial commutation relations, Indiana Univ. Math. J., Volume 68 (2019) no. 6, pp. 1849-1883 | DOI | MR | Zbl

[24] Richard P. Stanley Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, 2012

[25] Pierre Tarrago; Moritz Weber Unitary easy quantum groups: the free case and the group case, Int. Math. Res. Not., Volume 18 (2017), pp. 5710-5750 | Zbl

[26] Pierre Tarrago; Moritz Weber The classification of tensor categories of two-colored noncrossing partitions, J. Comb. Theory, Ser. A, Volume 154 (2018), pp. 464-506 | DOI | MR | Zbl

[27] Thomas Timmermann An invitation to quantum groups and duality: From Hopf algebras to multiplicative unitaries and beyond, EMS Textbooks in Mathematics, European Mathematical Society, 2008 | DOI

[28] Dan-Virgil Voiculescu; Nicolai Stammeier; Moritz Weber Free probability and operator algebras, Münster Lectures in Mathematics, European Mathematical Society, 2016

[29] Shuzhou Wang Free products of compact quantum groups, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692 | DOI | MR | Zbl

[30] Shuzhou Wang Tensor products and crossed products of compact quantum groups, Proc. Lond. Math. Soc., Volume 71 (1995) no. 3, pp. 695-720 | DOI | MR | Zbl

[31] Shuzhou Wang Quantum symmetry groups of finite spaces, Commun. Math. Phys., Volume 195 (1998) no. 1, pp. 195-211 | DOI | MR | Zbl

[32] Moritz Weber On the classification of easy quantum groups, Adv. Math., Volume 245 (2013), pp. 500-533 | DOI | MR | Zbl

[33] Stanisław L. Woronowicz Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987) no. 4, pp. 613-665 | DOI | MR | Zbl

[34] Stanisław L. Woronowicz Tannaka–Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math., Volume 93 (1988) no. 1, pp. 35-76 | DOI | MR | Zbl

[35] Stanisław L. Woronowicz A remark on compact matrix quantum groups, Lett. Math. Phys., Volume 21 (1991) no. 1, pp. 35-39 | DOI | MR | Zbl

Cited by Sources: