What distributions arise as the distribution of the distance between two typical points in some measured metric space? This seems to be a surprisingly subtle problem. We conjecture that every distribution with a density function whose support contains $0$ does arise in this way, and give some partial results in that direction.
Quelles distributions apparaissent comme lois de la distance entre deux points typiques dans un espace métrique mesuré ? Cette question naturelle semble étonnamment subtile. Nous conjecturons que toute distribution possédant une densité dont le support contient 0 peut apparaître de cette maniere. Nous étayons cette conjecture par des résultats partiels.
Accepté le :
Publié le :
Keywords: Characterization of distribution, construction of distribution, distance, measured metric space, tree
Mots-clés : caractérisation de loi, distance, espace métrique mesuré, arbre
David Aldous 1 ; Guillaume Blanc 2 ; Nicolas Curien 3
CC-BY 4.0
@article{AFST_2025_6_34_5_1345_0,
author = {David Aldous and Guillaume Blanc and Nicolas Curien},
title = {The distance problem on measured metric spaces},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {1345--1365},
year = {2025},
publisher = {Universit\'e de Toulouse, Toulouse},
volume = {Ser. 6, 34},
number = {5},
doi = {10.5802/afst.1835},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1835/}
}
TY - JOUR AU - David Aldous AU - Guillaume Blanc AU - Nicolas Curien TI - The distance problem on measured metric spaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 1345 EP - 1365 VL - 34 IS - 5 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1835/ DO - 10.5802/afst.1835 LA - en ID - AFST_2025_6_34_5_1345_0 ER -
%0 Journal Article %A David Aldous %A Guillaume Blanc %A Nicolas Curien %T The distance problem on measured metric spaces %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 1345-1365 %V 34 %N 5 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1835/ %R 10.5802/afst.1835 %G en %F AFST_2025_6_34_5_1345_0
David Aldous; Guillaume Blanc; Nicolas Curien. The distance problem on measured metric spaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 5, pp. 1345-1365. doi: 10.5802/afst.1835
[1] Distributions of distance between two random points in Hilbert space MathOverflow, https://mathoverflow.net/q/428539 (version: 2022-08-15)
[2] Representations for partially exchangeable arrays of random variables, J. Multivariate Anal., Volume 11 (1981) no. 4, pp. 581-598 | DOI | MR | Zbl
[3] New hexachordal theorems in metric spaces with a probability measure, Rend. Semin. Mat. Univ. Padova, Volume 152 (2024), pp. 45-58 | DOI | Zbl | MR
[4] Exchangeable random arrays, 2013 (Lecture notes, available at https://www.stat.berkeley.edu/~aldous/206-Exch/Papers/austin_arrays.pdf)
[5] How Many Songs are There in the World? (2025) Musicianwave, https://www.musicianwave.com/how-many-songs-are-there-in-the-world (version: 2023-07-18)
[6] On the Turnpike Problem, Ph. D. Thesis, Simon Fraser University, BC, Canada (2000)
[7] Harmonic functions on metric measure spaces: convergence and compactness, Potential Anal., Volume 31 (2009) no. 3, pp. 203-214 | DOI | MR | Zbl
[8] Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser, 1999 (based on the 1981 french original, with appendices by M. Katz, P. Pansu and S. Semmes, translated from the french by Sean M. Bates) | MR | Zbl
[9] Row-column exchangeability and a generalized model for probability, Exchangeability in probability and statistics (Rome, 1981), North-Holland, 1982, pp. 281-291 | MR | Zbl
[10] Probabilistic symmetries and invariance principles, Probability and Its Applications, Springer, 2005 | DOI | MR | Zbl
[11] Homometric structures, Nature, Volume 143 (1939) no. 3631, pp. 939-940 | DOI
[12] A partial digest approach to restriction site mapping, Bull. Math. Biol., Volume 56 (1994), pp. 275-294 | DOI | Zbl
[13] The universal Uryson space, Gromov’s metric triples, and random metrics on the series of natural numbers, Usp. Mat. Nauk, Volume 53 (1998) no. 5, pp. 57-64 | DOI | MR | Zbl
[14] Random and universal metric spaces, Fundamental mathematics today (Russian), Nezavis. Mosk. Univ., 2003, pp. 54-88 | MR
Cité par Sources :