The distance problem on measured metric spaces
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 5, pp. 1345-1365

What distributions arise as the distribution of the distance between two typical points in some measured metric space? This seems to be a surprisingly subtle problem. We conjecture that every distribution with a density function whose support contains $0$ does arise in this way, and give some partial results in that direction.

Quelles distributions apparaissent comme lois de la distance entre deux points typiques dans un espace métrique mesuré ? Cette question naturelle semble étonnamment subtile. Nous conjecturons que toute distribution possédant une densité dont le support contient 0 peut apparaître de cette maniere. Nous étayons cette conjecture par des résultats partiels.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1835
Classification : 60B05, 60E99
Keywords: Characterization of distribution, construction of distribution, distance, measured metric space, tree
Mots-clés : caractérisation de loi, distance, espace métrique mesuré, arbre

David Aldous 1 ; Guillaume Blanc 2 ; Nicolas Curien 3

1 Department of Statistics, 367 Evans Hall # 3860, U.C. Berkeley, CA 94720, USA
2 EPFL, MA A2 397, (Bâtiment MA) Station 8 1015 Lausanne, Switzerland
3 Université Paris-Saclay, BP74, 38402 SMH Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AFST_2025_6_34_5_1345_0,
     author = {David Aldous and Guillaume Blanc and Nicolas Curien},
     title = {The distance problem on measured metric spaces},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1345--1365},
     year = {2025},
     publisher = {Universit\'e de Toulouse, Toulouse},
     volume = {Ser. 6, 34},
     number = {5},
     doi = {10.5802/afst.1835},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1835/}
}
TY  - JOUR
AU  - David Aldous
AU  - Guillaume Blanc
AU  - Nicolas Curien
TI  - The distance problem on measured metric spaces
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2025
SP  - 1345
EP  - 1365
VL  - 34
IS  - 5
PB  - Université de Toulouse, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1835/
DO  - 10.5802/afst.1835
LA  - en
ID  - AFST_2025_6_34_5_1345_0
ER  - 
%0 Journal Article
%A David Aldous
%A Guillaume Blanc
%A Nicolas Curien
%T The distance problem on measured metric spaces
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2025
%P 1345-1365
%V 34
%N 5
%I Université de Toulouse, Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1835/
%R 10.5802/afst.1835
%G en
%F AFST_2025_6_34_5_1345_0
David Aldous; Guillaume Blanc; Nicolas Curien. The distance problem on measured metric spaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 5, pp. 1345-1365. doi: 10.5802/afst.1835

[1] David J. Aldous Distributions of distance between two random points in Hilbert space MathOverflow, https://mathoverflow.net/q/428539 (version: 2022-08-15)

[2] David J. Aldous Representations for partially exchangeable arrays of random variables, J. Multivariate Anal., Volume 11 (1981) no. 4, pp. 581-598 | DOI | MR | Zbl

[3] Moreno Andreatta; Corentin Guichaoua; Nicolas Juillet New hexachordal theorems in metric spaces with a probability measure, Rend. Semin. Mat. Univ. Padova, Volume 152 (2024), pp. 45-58 | DOI | Zbl | MR

[4] Tim Austin Exchangeable random arrays, 2013 (Lecture notes, available at https://www.stat.berkeley.edu/~aldous/206-Exch/Papers/austin_arrays.pdf)

[5] Brian Clark How Many Songs are There in the World? (2025) Musicianwave, https://www.musicianwave.com/how-many-songs-are-there-in-the-world (version: 2023-07-18)

[6] Tamara Dakic On the Turnpike Problem, Ph. D. Thesis, Simon Fraser University, BC, Canada (2000)

[7] Michał Gaczkowski; Przemysław Górka Harmonic functions on metric measure spaces: convergence and compactness, Potential Anal., Volume 31 (2009) no. 3, pp. 203-214 | DOI | MR | Zbl

[8] Misha Gromov Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser, 1999 (based on the 1981 french original, with appendices by M. Katz, P. Pansu and S. Semmes, translated from the french by Sean M. Bates) | MR | Zbl

[9] Douglas N. Hoover Row-column exchangeability and a generalized model for probability, Exchangeability in probability and statistics (Rome, 1981), North-Holland, 1982, pp. 281-291 | MR | Zbl

[10] Olav Kallenberg Probabilistic symmetries and invariance principles, Probability and Its Applications, Springer, 2005 | DOI | MR | Zbl

[11] Arthur L. Patterson Homometric structures, Nature, Volume 143 (1939) no. 3631, pp. 939-940 | DOI

[12] Steven S. Skiena; Gopalakrishnan Sundaram A partial digest approach to restriction site mapping, Bull. Math. Biol., Volume 56 (1994), pp. 275-294 | DOI | Zbl

[13] Anatoliĭ M. Vershik The universal Uryson space, Gromov’s metric triples, and random metrics on the series of natural numbers, Usp. Mat. Nauk, Volume 53 (1998) no. 5, pp. 57-64 | DOI | MR | Zbl

[14] Anatoliĭ M. Vershik Random and universal metric spaces, Fundamental mathematics today (Russian), Nezavis. Mosk. Univ., 2003, pp. 54-88 | MR

Cité par Sources :