[Exposant d’accéleration dans les équations non locales générales avec un faible effet Allee]
We study an acceleration phenomenon arising in monostable integro-differential equations with a weak Allee effect. Previous works have shown its occurrence and have given correct upper bounds on the rate of expansion in some particular cases, but precise lower bounds were still missing. In this paper, we provide a sharp lower bound for this acceleration rate, which is valid for a large class of dispersion operators. Our results manage to cover fractional Laplace operators and standard convolutions in a unified way, which is new in the literature. An important result of the paper is a general flattening estimate of independent interest: this phenomenon appears regularly in acceleration situations, but getting quantitative estimates is in general an open question. With this estimate at hand, we construct a subsolution that captures the expected behaviour of the accelerating solution (rates of expansion and flattening) and identifies several regimes that appear in the dynamics depending on the parameters of the problem.
Nous étudions un phénomène d’accélération survenant dans les équations intégro-différentielles monostables avec un faible effet Allee. De précédents travaux avaient établi son existence et fourni des bornes supérieures correctes sur le taux d’expansion pour des classes particulières d’opérateur de diffusion, mais des bornes inférieures précises faisaient encore défaut. Nous fournissons ici une borne inférieure précise pour ce taux, valable pour une large classe d’opérateurs de dispersion. Nos résultats sont génériques dans la classe d’opérateurs considérée et couvrent de manière unifiée aussi bien les opérateurs de type laplacien fractionnaire que les opérateurs de convolution standards, ce qui est une nouveauté. Un résultat important de l’article, et d’intérêt indépendant, est une estimation générale de l’aplatissement des solutions. Ce phénomène apparaît dans les situations d’accélération, mais l’obtention d’estimations quantitatives reste en général une question ouverte. Cette estimation est fondamentale dans notre construction d’une sous-solution qui capture la comportement attendu de la solution accélérée (taux d’expansion et d’aplatissement) en identifiant plusieurs régimes qui apparaissent dans la dynamique en fonction des paramètres du problème.
Accepté le :
Publié le :
Keywords: semilinear evolution problem, generic non-local dispersion operators, fractional Laplace operator, convolution operator, positive solution, acceleration, level lines
Mots-clés : problème d’évolution semi-linéaire, opérateurs non locaux génériques de dispersion, laplacien fractionaire, opérateur de convolution, solution positive, accélération, lignes de niveau
Emeric Bouin 1 ; Jérôme Coville 2 ; Guillaume Legendre 1
CC-BY 4.0
@article{AFST_2025_6_34_5_1475_0,
author = {Emeric Bouin and J\'er\^ome Coville and Guillaume Legendre},
title = {Sharp exponent of acceleration in general non-local equations with a weak {Allee} effect},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {1475--1540},
year = {2025},
publisher = {Universit\'e de Toulouse, Toulouse},
volume = {Ser. 6, 34},
number = {5},
doi = {10.5802/afst.1838},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1838/}
}
TY - JOUR AU - Emeric Bouin AU - Jérôme Coville AU - Guillaume Legendre TI - Sharp exponent of acceleration in general non-local equations with a weak Allee effect JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2025 SP - 1475 EP - 1540 VL - 34 IS - 5 PB - Université de Toulouse, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1838/ DO - 10.5802/afst.1838 LA - en ID - AFST_2025_6_34_5_1475_0 ER -
%0 Journal Article %A Emeric Bouin %A Jérôme Coville %A Guillaume Legendre %T Sharp exponent of acceleration in general non-local equations with a weak Allee effect %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2025 %P 1475-1540 %V 34 %N 5 %I Université de Toulouse, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1838/ %R 10.5802/afst.1838 %G en %F AFST_2025_6_34_5_1475_0
Emeric Bouin; Jérôme Coville; Guillaume Legendre. Sharp exponent of acceleration in general non-local equations with a weak Allee effect. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 34 (2025) no. 5, pp. 1475-1540. doi: 10.5802/afst.1838
[1] Traveling waves for a bistable equation with nonlocal diffusion, Adv. Differ. Equ., Volume 20 (2015) no. 9-10, pp. 887-936 | DOI | Zbl | MR
[2] A nonlocal anisotropic model for phase transitions. I. The optimal profile problem, Math. Ann., Volume 310 (1998) no. 3, pp. 527-560 | DOI | Zbl | MR
[3] Fujita blow up phenomena and hair trigger effect: the role of dispersal tails, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 34 (2017) no. 5, pp. 1309-1327 | DOI | Zbl | Numdam | MR
[4] Slowing Allee effect versus accelerating heavy tails in monostable reaction diffusion equations, Nonlinearity, Volume 30 (2017) no. 2, pp. 687-702 | DOI | Zbl | MR
[5] Propagation phenomena in monostable integro-differential equations: acceleration or not?, J. Differ. Equations, Volume 263 (2017) no. 9, pp. 5727-5758 | DOI | Zbl | MR
[6] Interplay of nonlinear diffusion, initial tails and Allee effect on the speed of invasions (2017) | arXiv
[7] When fast diffusion and reactive growth both induce accelerating invasions, Commun. Pure Appl. Anal., Volume 18 (2019) no. 6, pp. 3011-3034 | DOI | Zbl | MR
[8] The social life of animals, W. W. Norton & Company, Inc., 1938 | DOI
[9] Lévy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, 2009 | DOI | Zbl | MR
[10] Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., Volume 30 (1978) no. 1, pp. 33-76 | DOI | Zbl
[11] Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., Volume 25 (1997) no. 2-3, pp. 151-167 | DOI | Zbl | MR
[12] Non-local Dirichlet forms and symmetric jump processes, Trans. Am. Math. Soc., Volume 361 (2009) no. 4, pp. 1963-1999 | Zbl | MR | DOI
[13] Multiple Allee effects and population management, Trends Ecol. Evol., Volume 22 (2007) no. 4, pp. 185-191 | DOI
[14] Lévy processes, Cambridge Tracts in Mathematics, 121, Cambridge University Press, 1998 | Zbl | MR
[15] Some theorems on stable processes, Trans. Am. Math. Soc., Volume 95 (1960) no. 2, pp. 263-273 | DOI | Zbl | MR
[16] Density and tails of unimodal convolution semigroups, J. Funct. Anal., Volume 266 (2014) no. 6, pp. 3543-3571 | DOI | Zbl | MR
[17] Heat kernel of anisotropic nonlocal operators, Doc. Math., Volume 25 (2020), pp. 1-54 | DOI | Zbl | MR
[18] Acceleration in integro-differential combustion equations (2021) | arXiv
[19] Sharp exponent of acceleration in integro-differential equations with weak Allee effect (2021) (https://hal.science/hal-03452141v1)
[20] Sharp exponent of acceleration in integro-differential equations with weak Allee effect (2021) | arXiv
[21] Thin front limit of an integro-differential Fisher-KPP equation with fat-tailed kernels, SIAM J. Math. Anal., Volume 50 (2018) no. 3, pp. 3365-3394 | DOI | Zbl | MR
[22] Propagation phenomena with nonlocal diffusion in presence of an obstacle, J. Dyn. Differ. Equations, Volume 35 (2023) no. 1, pp. 237-301 | DOI | Zbl | MR
[23] Propagation in Fisher–KPP type equations with fractional diffusion in periodic media, C. R. Math., Volume 350 (2012) no. 19-20, pp. 885-890 | DOI | Zbl | Numdam
[24] Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire, C. R. Math., Volume 347 (2009) no. 23-24, pp. 1361-1366 | Numdam | DOI | Zbl
[25] The influence of fractional diffusion in Fisher-KPP equations, Commun. Math. Phys., Volume 320 (2013) no. 3, pp. 679-722 | DOI | Zbl | MR
[26] Uniqueness of travelling waves for nonlocal monostable equations, Proc. Am. Math. Soc., Volume 132 (2004) no. 8, pp. 2433-2439 | DOI | Zbl | MR
[27] Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., Volume 86 (2006) no. 3, pp. 271-291 | DOI | Zbl | MR
[28] Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differ. Equ., Volume 2 (1997) no. 1, pp. 125-160 | DOI | Zbl | MR
[29] Weighted Poincaré inequality and heat kernel estimates for finite range jump processes, Math. Ann., Volume 342 (2008) no. 4, pp. 833-883 | DOI | Zbl | MR
[30] Global heat kernel estimates for symmetric jump processes, Trans. Am. Math. Soc., Volume 363 (2011) no. 9, pp. 5021-5055 | DOI | Zbl | MR
[31] Existence of traveling waves in the fractional bistable equation, Arch. Math., Volume 100 (2013) no. 5, pp. 473-480 | DOI | Zbl
[32] Transition between linear and exponential propagation in Fisher-KPP type reaction-diffusion equations, Commun. Math. Phys., Volume 37 (2012) no. 11, pp. 2029-2049 | Zbl | DOI
[33] Allee effects in ecology and conservation, Oxford University Press, 2008 | DOI
[34] On uniqueness and monotonicity of solutions of non-local reaction diffusion equation, Ann. Mat. Pura Appl. (4), Volume 185 (2006) no. 3, pp. 461-485 | DOI | Zbl | MR
[35] Travelling fronts in asymmetric nonlocal reaction diffusion equations: the bistable and ignition cases (2007) (preprint, https://hal.science/hal-00696208v1)
[36] Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differ. Equations, Volume 244 (2008) no. 12, pp. 3080-3118 | DOI | Zbl | MR
[37] Propagation speed of travelling fronts in non local reaction-diffusion equations, Nonlinear Anal., Theory Methods Appl., Volume 60 (2005) no. 5, pp. 797-819 | DOI | Zbl | MR
[38] On a non-local equation arising in population dynamics, Proc. R. Soc. Edinb., Sect. A, Math., Volume 137 (2007) no. 4, pp. 727-755 | DOI | Zbl | MR
[39] Propagation acceleration in reaction diffusion equations with anomalous diffusions, Nonlinearity, Volume 34 (2021) no. 3, pp. 1544-1576 | DOI | Zbl | MR
[40] Asymptotic behavior of densities of unimodal convolution semigroups, Trans. Am. Math. Soc., Volume 369 (2017) no. 8, pp. 5623-5644 | DOI | Zbl | MR
[41] Allee effects: population growth, critical density, and the chance of extinction, Nat. Resour. Model., Volume 3 (1989) no. 4, pp. 481-538 | Zbl | DOI | MR
[42] The role of Allee effects for Gaussian and Lévy dispersals in an environmental niche, J. Math. Biol., Volume 89 (2024), 19, 39 pages | DOI | Zbl | MR
[43] A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem, J. Comput. Phys., Volume 355 (2018), pp. 233-252 | MR | DOI | Zbl
[44] Bistable traveling waves for monotone semiflows with applications, J. Eur. Math. Soc., Volume 17 (2015) no. 9, pp. 2243-2288 | DOI | Zbl | MR
[45] The wave of advance of advantageous genes, Ann. Eugenics, Volume 7 (1937) no. 4, pp. 335-369 | DOI | Zbl
[46] Accelerating solutions in integro-differential equations, SIAM J. Math. Anal., Volume 43 (2011) no. 4, pp. 1955-1974 | DOI | Zbl | MR
[47] Asymptotic behaviour and estimates of slowly varying convolution semigroups, Int. Math. Res. Not., Volume 2019 (2019) no. 23, pp. 7193-7258 | DOI | Zbl | MR
[48] Traveling wave solutions to some reaction diffusion equations with fractional Laplacians, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 1, pp. 251-273 | DOI | Zbl | MR
[49] Fast propagation for KPP equations with slowly decaying initial conditions, J. Differ. Equations, Volume 249 (2010) no. 7, pp. 1726-1745 | DOI | Zbl | MR
[50] Numerical methods for the fractional Laplacian: a finite difference-quadrature approach, SIAM J. Numer. Anal., Volume 52 (2014) no. 6, pp. 3056-3084 | DOI | Zbl | MR
[51] Spatial asymptotics at infinity for heat kernels of integro-differential operators, Trans. Am. Math. Soc., Volume 371 (2019) no. 9, pp. 6627-6663 | DOI | Zbl | MR
[52] On the Fisher-KPP equation with fast nonlinear diffusion, Proc. R. Soc. Lond., Ser. A, Volume 459 (2003) no. 2038, pp. 2529-2546 | DOI | Zbl | MR
[53] Construction and heat kernel estimates of general stable-like Markov processes, Diss. Math., Volume 569 (2021), pp. 1-86 | DOI | Zbl | MR
[54] Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Sér. Int., Sect. A: Math. et Mécan., Volume 4 (1937) no. 6, pp. 1-25 | Zbl
[55] Symmetric stable laws and stable-like jump-diffusions, Proc. Lond. Math. Soc. (3), Volume 80 (2000) no. 3, pp. 725-768 | DOI | Zbl | MR
[56] The effect of dispersal patterns on stream populations, SIAM Rev., Volume 47 (2005) no. 4, pp. 749-772 | DOI | Zbl | MR
[57] Spreading disease: integro-differential equations old and new, Math. Biosci., Volume 184 (2003) no. 2, pp. 201-222 | DOI | Zbl | MR
[58] Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity, Commun. Partial Differ. Equations, Volume 40 (2015) no. 5, pp. 957-993 | DOI | Zbl | MR
[59] A simple solver for the fractional Laplacian in multiple dimensions, SIAM J. Sci. Comput., Volume 42 (2020) no. 2, p. A878-A900 | DOI | Zbl | MR
[60] Dispersal kernels: review, Dispersal ecology and evolution, Oxford University Press, 2012, pp. 187-210 | DOI
[61] The spatial complexity of seed movement: animal-generated seed dispersal patterns in fragmented landscapes revealed by animal movement models, J. Ecol., Volume 108 (2020) no. 2, pp. 687-701 | DOI
[62] Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer, 1983 | DOI | Zbl | MR
[63] Variation in individual walking behavior creates the impression of a Lévy flight, Proc. Natl. Acad. Sci. USA, Volume 108 (2011) no. 21, pp. 8704-8707 | DOI
[64] On the zeros of an integral function represented by Fourier’s integral, Messenger Math., Volume 52 (1923), pp. 185-188 | Zbl
[65] Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, 68, Cambridge University Press, 2013 | Zbl | MR
[66] Travelling-front solutions for integro-differential equations. I, J. Reine Angew. Math., Volume 1980 (1980) no. 316, pp. 54-70 | DOI | Zbl | MR
[67] The Fisher-KPP equation with nonlinear fractional diffusion, SIAM J. Math. Anal., Volume 46 (2014) no. 5, pp. 3241-3276 | Zbl | MR | DOI
[68] Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations, SIAM J. Numer. Anal., Volume 51 (2013) no. 6, pp. 3458-3482 | DOI | Zbl | MR
[69] Long-time behavior of a class of biological models, SIAM J. Math. Anal., Volume 13 (1982) no. 3, pp. 353-396 | DOI | Zbl | MR
[70] Existence and nonexistence of travelling waves for a nonlocal monostable equation, Publ. Res. Inst. Math. Sci., Volume 45 (2009) no. 4, pp. 925-953 | DOI | Zbl | MR
[71] Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differ. Equations, Volume 252 (2012) no. 9, pp. 5096-5124 | DOI | Zbl | MR
[72] Optimal estimates on the propagation of reactions with fractional diffusion, Arch. Ration. Mech. Anal., Volume 247 (2023), 93, 33 pages | DOI | Zbl | MR
[73] Quenching and propagation of combustion without ignition temperature cutoff, Nonlinearity, Volume 18 (2005) no. 4, pp. 1463-1476 | DOI | Zbl | MR
Cité par Sources :