@article{AFST_1985_5_7_3-4_251_0, author = {St\'ephane Maingot}, title = {Sur l'extension des fonctions {C} {R}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {251--289}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {5e s{\'e}rie, 7}, number = {3-4}, year = {1985}, zbl = {0605.32008}, mrnumber = {877169}, language = {fr}, url = {https://afst.centre-mersenne.org/item/AFST_1985_5_7_3-4_251_0/} }
TY - JOUR AU - Stéphane Maingot TI - Sur l'extension des fonctions C R JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1985 SP - 251 EP - 289 VL - 7 IS - 3-4 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1985_5_7_3-4_251_0/ LA - fr ID - AFST_1985_5_7_3-4_251_0 ER -
%0 Journal Article %A Stéphane Maingot %T Sur l'extension des fonctions C R %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1985 %P 251-289 %V 7 %N 3-4 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1985_5_7_3-4_251_0/ %G fr %F AFST_1985_5_7_3-4_251_0
Stéphane Maingot. Sur l'extension des fonctions C R. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 7 (1985) no. 3-4, pp. 251-289. https://afst.centre-mersenne.org/item/AFST_1985_5_7_3-4_251_0/
[1] «A property of the functions and distributions annihilated by a locally integrable system of complex vector fields». Ann. of Marh. 113 (1981), 387-421. | MR | Zbl
et .[2] «About the holomorphic extension of CR functions on real hypersurfaces in complex space». Duke Math. J. 51, (1984), 77-107. | MR | Zbl
et .[3] «Differentiable manifolds in complex Euclidean space». Duke Math. J., 32 (1965), 1-22. | MR | Zbl
.[4] «CR extendability near a point where the first Leviform vanishes». Duke Math. J. 48 (1981), 665-684. | MR | Zbl
.[5] «Holomorphic extension of CR functions» Duke Math. J. 49 (1982), 757-784. | MR | Zbl
et .[6] «Families of analytic disc in n with Boundaries on a prescribed CR-submanifold». Ann. Scoula Norm. Sup. Pisa 4-5 (1978), 327-380. | Numdam | MR | Zbl
et .[7] «An introduction to complex analysis in several variables». Van Nostrand N.J. 1966. | MR | Zbl
.[8] «On the local character of the solutions of an a typical linear differential equation in three variables and a related theorem for regular functions of two complex variables». Ann. of Math. (2) 64 (1956), 514-522. | MR | Zbl
.[9] «Principles of Mathematical analysis 3 rd edition». Mc Graw Hill, (1964). | MR | Zbl
.[10] «On the local holomorphic hull of a real submanifold in several complex variables». Comm. Pure Appl. Math. 19 (1966), 145-165. | MR | Zbl
.[11] «Holomorphic hulls and holomorphic convexity of differentiable submanifolds». Trans. Amer. Math. Soc. 132 (1968), 245-262. | MR | Zbl
.