@article{AFST_1990_5_11_2_187_0, author = {Thomas H. Otway}, title = {An asymptotic condition for variational points of nonquadratic functionals}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {187--195}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 5, 11}, number = {2}, year = {1990}, zbl = {0724.49028}, mrnumber = {1191717}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1990_5_11_2_187_0/} }
TY - JOUR AU - Thomas H. Otway TI - An asymptotic condition for variational points of nonquadratic functionals JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1990 SP - 187 EP - 195 VL - 11 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1990_5_11_2_187_0/ LA - en ID - AFST_1990_5_11_2_187_0 ER -
%0 Journal Article %A Thomas H. Otway %T An asymptotic condition for variational points of nonquadratic functionals %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1990 %P 187-195 %V 11 %N 2 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1990_5_11_2_187_0/ %G en %F AFST_1990_5_11_2_187_0
Thomas H. Otway. An asymptotic condition for variational points of nonquadratic functionals. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 11 (1990) no. 2, pp. 187-195. https://afst.centre-mersenne.org/item/AFST_1990_5_11_2_187_0/
[1] On the first variation of a varifold, Ann. of Math. 95 (1972) pp. 417-491 | MR | Zbl
) .-[2] On removability of a singular submanifold for weakly harmonic maps, J. Fac. Sci. Univ. Tokyo, Sect. IA 35 (1988) pp. 321-344 | MR | Zbl
) and ) .-[3] A Liouville theorem for certain nonstationary maps, Nonlinear Analysis, T.M.A. 12, n° 11 (1988) pp. 1263-1267 | MR | Zbl
) . -[4] Removable singularities of stationary fields, in "The Problem of Plateau, a Tribute to Jesse Douglas and Tibor Rado", Th. M. Rassias ed. (to appear) | MR | Zbl
) . -[5] A monotonicity formula for Yang-Mills fields, Manuscripta Math. 43 (1983) pp. 131-166 | MR | Zbl
) .-[6] Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964) pp. 247-302 | MR | Zbl
) . -[7] A connection between α-capacity and Lp-classes of differentiable functions, Ark. Math. 5, n° 24 (1964) pp. 331-341 | MR | Zbl
) . -