@article{AFST_1996_6_5_2_183_0, author = {Roger C. Baker and Glyn Harman}, title = {Sparsely totient numbers}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {183--190}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 6, 5}, number = {2}, year = {1996}, zbl = {0871.11060}, mrnumber = {1413852}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1996_6_5_2_183_0/} }
TY - JOUR AU - Roger C. Baker AU - Glyn Harman TI - Sparsely totient numbers JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1996 SP - 183 EP - 190 VL - 5 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1996_6_5_2_183_0/ LA - en ID - AFST_1996_6_5_2_183_0 ER -
%0 Journal Article %A Roger C. Baker %A Glyn Harman %T Sparsely totient numbers %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1996 %P 183-190 %V 5 %N 2 %I Université Paul Sabatier %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1996_6_5_2_183_0/ %G en %F AFST_1996_6_5_2_183_0
Roger C. Baker; Glyn Harman. Sparsely totient numbers. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 5 (1996) no. 2, pp. 183-190. https://afst.centre-mersenne.org/item/AFST_1996_6_5_2_183_0/
[1] The greatest prime factor of the integers in an interval, Acta Arithmetica 47 (1986), pp. 193-231. | MR | Zbl
) . -[2] Numbers with a large prime factor, Acta Arith. 73 (1995), pp. 119-145. | MR | Zbl
) and .-[3] Primes of the form [nc], J. of Number Theory, 50 (1995), pp. 261-277. | MR | Zbl
), and ) .-[4] Exponential sums with monomials, J. Number Theory 33 (1989), pp. 311-333. | MR | Zbl
) and ) . -[5] On the distribution of αp modulo one, J. London Math. Soc. 27 (1983), pp. 9-18. | MR | Zbl
) .-[6] On sparsely totient numbers, Glasgow Math. J. 33 (1991), pp. 349-358. | MR | Zbl
) . -[7] P2 in short intervals, Ann. Inst. Fourier, Grenoble, 31 (1981), pp. 37-56. | Numdam | MR | Zbl
) and ) .-[8] The greatest prime factor of the integers in an interval, Acta Arith., 65 (1993), pp. 301-328. | MR | Zbl
) .-[9] On sparsely totient numbers, Pacific J. Math. 121 (1986), pp. 407-426. | MR | Zbl
) and ) . -[10] P2 dans les petits intervalles, Séminaire de Théorie des Nombres de Paris (1989-90), Birkhaüser. | MR | Zbl
) .-