Closed hypersurfaces of S 4 with two constant symmetric curvatures
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 6 (1997) no. 2, pp. 187-202.
@article{AFST_1997_6_6_2_187_0,
     author = {Sebasti\~ao Carneiro de Almeida and Fabiano Gustavo Braga Brito},
     title = {Closed hypersurfaces of $S^4$ with two constant symmetric curvatures},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {187--202},
     publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences},
     address = {Toulouse},
     volume = {Ser. 6, 6},
     number = {2},
     year = {1997},
     zbl = {0905.53041},
     mrnumber = {1611812},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_1997_6_6_2_187_0/}
}
TY  - JOUR
AU  - Sebastião Carneiro de Almeida
AU  - Fabiano Gustavo Braga Brito
TI  - Closed hypersurfaces of $S^4$ with two constant symmetric curvatures
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1997
SP  - 187
EP  - 202
VL  - 6
IS  - 2
PB  - Université Paul Sabatier. Faculté des sciences
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/item/AFST_1997_6_6_2_187_0/
LA  - en
ID  - AFST_1997_6_6_2_187_0
ER  - 
%0 Journal Article
%A Sebastião Carneiro de Almeida
%A Fabiano Gustavo Braga Brito
%T Closed hypersurfaces of $S^4$ with two constant symmetric curvatures
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1997
%P 187-202
%V 6
%N 2
%I Université Paul Sabatier. Faculté des sciences
%C Toulouse
%U https://afst.centre-mersenne.org/item/AFST_1997_6_6_2_187_0/
%G en
%F AFST_1997_6_6_2_187_0
Sebastião Carneiro de Almeida; Fabiano Gustavo Braga Brito. Closed hypersurfaces of $S^4$ with two constant symmetric curvatures. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 6 (1997) no. 2, pp. 187-202. https://afst.centre-mersenne.org/item/AFST_1997_6_6_2_187_0/

[AD] Alencar (H.) and Do Carmo (M.) .- Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc. 120 (1994), pp. 1223-1229. | MR | Zbl

[AB1] De Almeida (S.C.) and Brito (F.G.B.).- Minimal hypersurfaces of S4 with constant Gauss-Kronecker curvature, Math. Z. 195 (1987), pp. 99-107. | MR | Zbl

[AB2] De Almeida (S.C.) and Brito (F.G.B.). - Closed 3-dimensional hypersurface with constant mean curvature and constant scalar curvature, Duke Math. J. 61 (1990), pp. 195-206. | MR | Zbl

[BD] Barbosa (J.L.M.) and Delgado (J.A.) .- Ruled submanifolds of space forms with mean curvature of nonzero constant length, American Journal of Mathematics, 106 (1984), pp. 763-780. | MR | Zbl

[Ca] Cartan (E.) .- Familles de surfaces isoparamétriques dans les espaces à courbure constante, Annali di Mat. 17 (1938), pp. 177-191. | JFM | MR | Zbl

[C] Chang (S.). - A closed hypersurface with constant scalar curvature and mean curvature in S4 is isoparametric, Communications in Analysis and Geometry, 1, n° 1 (1993), pp. 71-100. | MR | Zbl

[CDK] Chern (S.S.), Do Carmo (M.) and Kobayashi (S.) .- Minimal submanifolds of the sphere with second fundamental form of constant length, Functional analysis and related fields, pp. 59-75 (ed. F. Browder), Berlin Heidelberg New York, Springer, 1970. | MR | Zbl

[H] Hsiang (Wu Yi).- Minimal cones and the spherical Bernstein problem, I, Ann. of Math. 118 (1983), p. 61-73. | MR | Zbl

[L] Lawson (H.B. Jr).- Minimal Varieties in Real and Complex Geometry, Séminaire de Mathématiques Supérieures, Département de Mathématiques - Université de Montréal (1974). | MR | Zbl

[PT1] Peng (C.K.) and Terng (C.L.).- Minimal hypersurfaces of spheres with constant scalar curvature, Seminar on minimal submanifolds (ed. E. Bombieri), Ann. Math. Stud. 103 (1983), Princeton Univ. Press, pp. 177-198. | MR | Zbl

[PT2] Peng (C.K.) and Terng (C.L.). - The scalar curvature of minimal hypersurfaces in spheres, Math. Ann. 266 (1983), pp. 105-113. | MR | Zbl

[R] Ramanathan (J.) .- Minimal hypersurfaces in S4 with vanishing Gauss-Kronecker curvature, Math. Z. 205 (1990), pp. 645-658. | MR | Zbl

[W] Van Der Waerden (B.L.). - Algebra, Vol. 1, Frederick Ungar Publishing Co., Inc. (1970). | MR