@article{AFST_1997_6_6_2_187_0, author = {Sebasti\~ao Carneiro de Almeida and Fabiano Gustavo Braga Brito}, title = {Closed hypersurfaces of $S^4$ with two constant symmetric curvatures}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {187--202}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {Ser. 6, 6}, number = {2}, year = {1997}, zbl = {0905.53041}, mrnumber = {1611812}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_1997_6_6_2_187_0/} }
TY - JOUR AU - Sebastião Carneiro de Almeida AU - Fabiano Gustavo Braga Brito TI - Closed hypersurfaces of $S^4$ with two constant symmetric curvatures JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1997 SP - 187 EP - 202 VL - 6 IS - 2 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1997_6_6_2_187_0/ LA - en ID - AFST_1997_6_6_2_187_0 ER -
%0 Journal Article %A Sebastião Carneiro de Almeida %A Fabiano Gustavo Braga Brito %T Closed hypersurfaces of $S^4$ with two constant symmetric curvatures %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1997 %P 187-202 %V 6 %N 2 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1997_6_6_2_187_0/ %G en %F AFST_1997_6_6_2_187_0
Sebastião Carneiro de Almeida; Fabiano Gustavo Braga Brito. Closed hypersurfaces of $S^4$ with two constant symmetric curvatures. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 6 (1997) no. 2, pp. 187-202. https://afst.centre-mersenne.org/item/AFST_1997_6_6_2_187_0/
[AD] Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc. 120 (1994), pp. 1223-1229. | MR | Zbl
) and ) .-[AB1] Minimal hypersurfaces of S4 with constant Gauss-Kronecker curvature, Math. Z. 195 (1987), pp. 99-107. | MR | Zbl
) and ).-[AB2] Closed 3-dimensional hypersurface with constant mean curvature and constant scalar curvature, Duke Math. J. 61 (1990), pp. 195-206. | MR | Zbl
) and ). -[BD] Ruled submanifolds of space forms with mean curvature of nonzero constant length, American Journal of Mathematics, 106 (1984), pp. 763-780. | MR | Zbl
) and ) .-[Ca] Familles de surfaces isoparamétriques dans les espaces à courbure constante, Annali di Mat. 17 (1938), pp. 177-191. | JFM | MR | Zbl
) .-[C] A closed hypersurface with constant scalar curvature and mean curvature in S4 is isoparametric, Communications in Analysis and Geometry, 1, n° 1 (1993), pp. 71-100. | MR | Zbl
). -[CDK] Minimal submanifolds of the sphere with second fundamental form of constant length, Functional analysis and related fields, pp. 59-75 (ed. F. Browder), Berlin Heidelberg New York, Springer, 1970. | MR | Zbl
), ) and ) .-[H] Minimal cones and the spherical Bernstein problem, I, Ann. of Math. 118 (1983), p. 61-73. | MR | Zbl
).-[L] Minimal Varieties in Real and Complex Geometry, Séminaire de Mathématiques Supérieures, Département de Mathématiques - Université de Montréal (1974). | MR | Zbl
).-[PT1] Minimal hypersurfaces of spheres with constant scalar curvature, Seminar on minimal submanifolds (ed. E. Bombieri), Ann. Math. Stud. 103 (1983), Princeton Univ. Press, pp. 177-198. | MR | Zbl
) and ).-[PT2] The scalar curvature of minimal hypersurfaces in spheres, Math. Ann. 266 (1983), pp. 105-113. | MR | Zbl
) and ). -[R] Minimal hypersurfaces in S4 with vanishing Gauss-Kronecker curvature, Math. Z. 205 (1990), pp. 645-658. | MR | Zbl
) .-[W] Algebra, Vol. 1, Frederick Ungar Publishing Co., Inc. (1970). | MR
). -