@article{AFST_1998_6_7_3_497_0, author = {H\'el\`ene Maugendre}, title = {Discriminant d{\textquoteright}un germe $(g, f) : (\mathbb {C}^2,0) \rightarrow (\mathbb {C}^2, 0)$ et quotients de contact dans la r\'esolution de $f \cdot g$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {497--525}, publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences}, address = {Toulouse}, volume = {6e s{\'e}rie, 7}, number = {3}, year = {1998}, zbl = {0936.32012}, language = {fr}, url = {https://afst.centre-mersenne.org/item/AFST_1998_6_7_3_497_0/} }
TY - JOUR AU - Hélène Maugendre TI - Discriminant d’un germe $(g, f) : (\mathbb {C}^2,0) \rightarrow (\mathbb {C}^2, 0)$ et quotients de contact dans la résolution de $f \cdot g$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1998 SP - 497 EP - 525 VL - 7 IS - 3 PB - Université Paul Sabatier. Faculté des sciences PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_1998_6_7_3_497_0/ LA - fr ID - AFST_1998_6_7_3_497_0 ER -
%0 Journal Article %A Hélène Maugendre %T Discriminant d’un germe $(g, f) : (\mathbb {C}^2,0) \rightarrow (\mathbb {C}^2, 0)$ et quotients de contact dans la résolution de $f \cdot g$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1998 %P 497-525 %V 7 %N 3 %I Université Paul Sabatier. Faculté des sciences %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_1998_6_7_3_497_0/ %G fr %F AFST_1998_6_7_3_497_0
Hélène Maugendre. Discriminant d’un germe $(g, f) : (\mathbb {C}^2,0) \rightarrow (\mathbb {C}^2, 0)$ et quotients de contact dans la résolution de $f \cdot g$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 7 (1998) no. 3, pp. 497-525. https://afst.centre-mersenne.org/item/AFST_1998_6_7_3_497_0/
[1] Plane Algebraic Curves, Birkhäuser Verlag, 1986. | MR | Zbl
) et ) .-[2] Courbes algébriques planes, Publications mathématiques de l'Université Paris-VII, 1978. | MR | Zbl
) .-[3] Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Princeton University Press, Ann. Math. Studies 110 (1995). | MR | Zbl
) et ) .-[4] Algebraic Curves Benjamin, Mathematics Lecture Note Series, 1969. | MR | Zbl
) .-[5] Seifert Fibered Spaces in Three-Manifolds, A.M.S., Memoirs 220. | Zbl
) et ) .-[6] Calcul du nombre de cycles évanouissants d'une hypersurface complexe, Ann. Inst. Fourier 23, n° 4 (1973), pp. 261-270. | Numdam | MR | Zbl
) .-[7] Topological Use of Polar Curves, in Algebraic Geometry, Arcata 1974, A.M.S. Proceedings of Symposia in Pure Mathematics 29 (1975), pp. 507-512. | MR | Zbl
) .-[8] Courbes polaires et topologie des courbes planes, Ann. Scienc. E.N.S., 4-ième série, 24 (1991), pp. 141-169. | Numdam | MR | Zbl
), ) et ) .-[9] Sur le comportement des courbes polaires associées aux germes de courbes planes, Compositio Mathematica 72 (1989), pp. 87-113. | Numdam | MR | Zbl
), ) et ) .-[10] Equisingularité dans les pinceaux de germes de courbes planes et C0-suffisance, prépublication de l'université de Genève (février 1996).
), ) et ) .-[11] Topologie de germes de courbes planes à lieu jacobien lisse, Comptes-Rendus de l'Académie des Sciences Paris, série 1, 320 (1995), pp. 325-328. | MR | Zbl
) . -[12] Topologie des germes jacobiens, Thèse de doctorat (avril 1995). | MR
) .-[13] Topologie des germes jacobiens, Comptes-Rendus de l'Académie des Sciences Paris, série 1, 322 (1996), pp. 945-948. | MR | Zbl
) .-[14] Discriminant of a germ Φ : (C2 , 0) → (C2, 0) and Seifert fibered manifolds, à paraître au Journal of the London Math. Society. | MR | Zbl
) .-[15] Topologie des germes de courbes planes à plusieurs branches, Prépublication de l'Université de Genève, 1985.
) et ) .-[16] Singular Points of Complex Hypersurfaces, Princeton University Press, 1968. | MR | Zbl
) . -[17] Topological Types of Complex Isolated Hypersurface Singularities, Kodai Math. J. 12 (1989), pp. 23-29. | MR | Zbl
) .-[18] Introduction to equisingularityproblems, in Algebraic Geometry, Arcata 1974, A.M.S. Proceedings of Symposia in Pure Mathematics 29 (1975), pp. 593-632. | MR | Zbl
) . -[19] Eine klasse von 3-dimensionalen Mannigfaltigkeiten, Inv. Math. 3 (1967), pp. 308-333 and Inv. Math. 4 (1967), pp. 87-117. | MR | Zbl
) .-[20] General Theory of Saturation and of Saturated Local Rings II, Amer. J. of Math. 93 (1971), pp. 872-964. | MR | Zbl
) .-