Conjecture de Globevnik-Stout et théorème de Morera pour une chaîne holomorphe
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 8 (1999) no. 2, pp. 235-257.
@article{AFST_1999_6_8_2_235_0,
     author = {Tien-Cuong Dinh},
     title = {Conjecture de {Globevnik-Stout} et th\'eor\`eme de {Morera} pour une cha{\^\i}ne holomorphe},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {235--257},
     publisher = {Universit\'e Paul Sabatier. Facult\'e des sciences},
     address = {Toulouse},
     volume = {6e s{\'e}rie, 8},
     number = {2},
     year = {1999},
     zbl = {0959.32020},
     mrnumber = {1751442},
     language = {fr},
     url = {https://afst.centre-mersenne.org/item/AFST_1999_6_8_2_235_0/}
}
TY  - JOUR
AU  - Tien-Cuong Dinh
TI  - Conjecture de Globevnik-Stout et théorème de Morera pour une chaîne holomorphe
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1999
SP  - 235
EP  - 257
VL  - 8
IS  - 2
PB  - Université Paul Sabatier. Faculté des sciences
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/item/AFST_1999_6_8_2_235_0/
LA  - fr
ID  - AFST_1999_6_8_2_235_0
ER  - 
%0 Journal Article
%A Tien-Cuong Dinh
%T Conjecture de Globevnik-Stout et théorème de Morera pour une chaîne holomorphe
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1999
%P 235-257
%V 8
%N 2
%I Université Paul Sabatier. Faculté des sciences
%C Toulouse
%U https://afst.centre-mersenne.org/item/AFST_1999_6_8_2_235_0/
%G fr
%F AFST_1999_6_8_2_235_0
Tien-Cuong Dinh. Conjecture de Globevnik-Stout et théorème de Morera pour une chaîne holomorphe. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 8 (1999) no. 2, pp. 235-257. https://afst.centre-mersenne.org/item/AFST_1999_6_8_2_235_0/

[1] Agranovski (M.L.), Semenov (A.M.). - Boundary analogues of Hartog's theorem, Sibirian. Math. J., 32 (1991), pp. 168-170. | MR | Zbl

[2] Dinh (T.C.). - Enveloppe polynomiale d'un compact de longueur finie et chaînes holomorphes à bord rectifiable, Acta Mathematica, 180:1 (1998), pp. 31-67. | MR | Zbl

[3] Dinh (T.C.). - Orthogonal measures on the boundary of a Riemann surface and polynomial hull of compacts of finite length, Journal of Functional Analysis, 157 (1998), pp. 624-649. | MR | Zbl

[4] Dinh (T.C.). - Problème du bord dans l'espace projectif complexe, Ann. Inst. Fourier, 48:5 (1998), pp. 1483-1512. | Numdam | MR | Zbl

[5] Dinh (T.C.). - Sur la caractérisation du bord d'une chaîne holomorphe dans l'espace projectif, à paraître dans Bull. S.M.F.. | Numdam | MR | Zbl

[6] Dolbeault (P.) et Henkin (G.). - Chaînes holomorphes de bord donné dans CPn, Bull. Soc. Math. de France, 125 (1997), pp. 383-445. | Numdam | MR | Zbl

[7] Federer (F.). - Geometric Measure Theory, Grundlenhren der Math. Wiss, 285, Springer, Berlin-Heidelberg-New York, (1988).

[8] Globevnik (J.), Stout (E.L.). - Boundary Morera theorems for holomorphic functions of several complex variables, Duke Math. J., 64 (1991), pp. 571-615. | MR | Zbl

[9] Globevnik (J.), Stout (E.L.). - Discs and the Morera propriety, Prépublication (1998).

[10] Harvey (R.). - Holomorphic chains and their boundaries, Proc. Symp. Pure Math., 30, vol. 1 (1977), pp. 309-382. | MR | Zbl

[11] Harvey (R.) and Lawson (B.). - On boundaries of complex analytic varieties I, Ann. of Math., 102 (1975), pp. 233-290. | MR | Zbl

[12] Henkin (G.). - The Abel-Radon transform and several complex variables, Ann. of Math. Stud., 7 (1995), pp. 223-275. | MR | Zbl

[13] Kytmanov (A.M.), Myslivets (S.G.). - On a certain boundary analogue of the Morera theorem, Sibirian Math. J., 36 (1995), n° 6, pp. 1171-1174. | MR | Zbl

[14] Rudin (W.). - Function Theory in the Unit Ball of CN, Springer, New York, 1980. | MR | Zbl

[15] Stolzenberg (G.). - Uniform approximation on smooth curves, Acta Math., 115 (1966), pp. 185-198. | MR | Zbl

[16] Stout (E.L.). - The boundary values of holomorphic functions of several complex variables, Duke Math. J., 44 (1977), pp. 105-108. | MR | Zbl

[17] Wermer (J.). - The hull of a curve in Cn, Ann. of Math., 68 (1958), pp. 550-561. | MR | Zbl