@article{AFST_2003_6_12_1_47_0, author = {Aurore Cabet}, title = {Local existence of a solution of a semi-linear wave equation in a neighborhood of initial characteristic hypersurfaces}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {47--102}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 12}, number = {1}, year = {2003}, zbl = {1047.35101}, mrnumber = {2124075}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_2003_6_12_1_47_0/} }
TY - JOUR AU - Aurore Cabet TI - Local existence of a solution of a semi-linear wave equation in a neighborhood of initial characteristic hypersurfaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2003 SP - 47 EP - 102 VL - 12 IS - 1 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_2003_6_12_1_47_0/ LA - en ID - AFST_2003_6_12_1_47_0 ER -
%0 Journal Article %A Aurore Cabet %T Local existence of a solution of a semi-linear wave equation in a neighborhood of initial characteristic hypersurfaces %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2003 %P 47-102 %V 12 %N 1 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_2003_6_12_1_47_0/ %G en %F AFST_2003_6_12_1_47_0
Aurore Cabet. Local existence of a solution of a semi-linear wave equation in a neighborhood of initial characteristic hypersurfaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 12 (2003) no. 1, pp. 47-102. https://afst.centre-mersenne.org/item/AFST_2003_6_12_1_47_0/
[1] Problème de Cauchy sur un conoïde caractéristique pour des Equations quasi-linéaires, Annali di Matematica Pura ed Applicata (IV), vol. CXXIX, 13-41 (1980). | MR | Zbl
-[2] Problème de Cauchy sur un conoïde caractéristique. Applications à certains systèmes non linéaires d'origine physique. (The characteristic Cauchy problem on a conoid. Applications to certain nonlinear systems of physical origin)., Flato, M. (ed.) et al., Physics on manifolds. Proceedings of the international colloquium analysis, manifols and physics in honour of Yvonne Choquet-Bruhat, Paris, France, June 3-5, 1992. Dordrecht: Kluwer Academic Publishers. Math. Phys. Stud. 15, 35-47 (1994). | MR | Zbl
et -[3] Methods of mathematical physics , vol. II New York: Interscience (1962). | MR | Zbl
and -[4] On the regular and the asymptotic characteristic initial value problem for Einstein's vacuum field equations, Proc. Roy. Soc. London A 375, 169-184 (1981). | MR | Zbl
-[5] On Characteristic Initial- Value and Mixed Problems, General Relativity and Gravitation , Vol.8, No. 4, 259-301 (1977). | Zbl
and -[6] Reduction of the characteristic initial value problem to the Cauchy probem and its applications to the Einstein equations , Proc. Roy. Soc. LondonA 427, 221-239 (1990). | MR | Zbl
-[7] Partial Differential Equations III: Nonlinear Equations, Applied Mathematical Sciences 117, New York, NY: Springer-Verlag, pp. 7-11 (1996). | MR | Zbl
-