@article{AFST_2003_6_12_4_479_0, author = {Albert Fathi}, title = {Regularity of $C^1$ solutions of the {Hamilton-Jacobi} equation}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {479--516}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 12}, number = {4}, year = {2003}, zbl = {1059.37047}, mrnumber = {2060597}, language = {en}, url = {https://afst.centre-mersenne.org/item/AFST_2003_6_12_4_479_0/} }
TY - JOUR AU - Albert Fathi TI - Regularity of $C^1$ solutions of the Hamilton-Jacobi equation JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2003 SP - 479 EP - 516 VL - 12 IS - 4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/item/AFST_2003_6_12_4_479_0/ LA - en ID - AFST_2003_6_12_4_479_0 ER -
%0 Journal Article %A Albert Fathi %T Regularity of $C^1$ solutions of the Hamilton-Jacobi equation %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2003 %P 479-516 %V 12 %N 4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/item/AFST_2003_6_12_4_479_0/ %G en %F AFST_2003_6_12_4_479_0
Albert Fathi. Regularity of $C^1$ solutions of the Hamilton-Jacobi equation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 12 (2003) no. 4, pp. 479-516. https://afst.centre-mersenne.org/item/AFST_2003_6_12_4_479_0/
[Be] The Hamilton-Jacobi Equation: A Global Approach, Academic Press, New York , San Francisco, and London , Mathematics in Science and Enggineering 131, (1977). | MR | Zbl
,[BP] Hamiltonian Diffeomorphisms and Lagrangian Distributions, Math. Zeitschrift 2, p. 173-210 (1992). | Zbl
& ,[CC] Fully Nonlinear Elliptic Equations , Colloquium Publications43, AMS, Providence (1995 ). | Zbl
& ,[CI] Methods of Dynamic and Nonsmooth Optimization , CBMS-NSF Regional Conference Series in Applied Mathematics 57 , SIAM, Philadelphia (1989). | MR | Zbl
,[Es] Horospheres and the Stable Part of the Geodesic Flow, Math. Zeitschrift 153, p. 237-251 (1977). | MR | Zbl
,[Fa] Théorème KAM faible et Théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris, Série I 324, p. 1043-1046 (1997 ). | MR | Zbl
,[FI] The Cauchy Problem for a nonlinear First Order Partial Diferrential Equation, J. Diff. Equ. 5, p. 515-530 (1969). | MR | Zbl
,[He] Inégalités à priori pour des tores lagrangiens invariants par des difféomorphismes symplectiques, Publ. Math. IHES 70, p. 47-101 (1989). | Numdam | MR | Zbl
,[Ki] Regularity Classes for Operations in Convexity Theory, Kodai Math. J 15, p. 354-374 (1992). | MR | Zbl
,[Kn] Mannigfaltigkeiten Ohne Konjugierte Punkte , Bonner Mathematische Shriften 168, (1986). | MR | Zbl
,[La] Differential and Riemannian Manifolds, Third Edition, Graduate Texts in Mathematics 160, Springer, New York, Berlin, Heidelberg ( 1995). | MR | Zbl
,[Li] Generalized Solutions of Hamilton-Jacobi Equations , Research Notes in Mathematics 69, Pitman, London ( 1982). | MR | Zbl
,[Ma] Action Minimizing Meausures for Positive Definite Lagrangian Systems, Math. Z. 207, p. 169-207 (1991). | EuDML | MR | Zbl
,[PR] Fonction distance et singularités , Bull. Sci. Math. 108, p. 187-195 (1984). | Zbl
& ,[Ze] Lipschitz Regularity in some Geometric Problems, preprint ENS-Lyon 2000 . | MR | Zbl
,