@article{AFST_2003_6_12_4_517_0,
author = {Stepan Yu. Orevkov},
title = {Riemann existence theorem and construction of real algebraic curves},
journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
pages = {517--531},
year = {2003},
publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
address = {Toulouse},
volume = {Ser. 6, 12},
number = {4},
doi = {10.5802/afst.1060},
mrnumber = {2060598},
zbl = {1078.14083},
language = {en},
url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1060/}
}
TY - JOUR AU - Stepan Yu. Orevkov TI - Riemann existence theorem and construction of real algebraic curves JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2003 SP - 517 EP - 531 VL - 12 IS - 4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1060/ DO - 10.5802/afst.1060 LA - en ID - AFST_2003_6_12_4_517_0 ER -
%0 Journal Article %A Stepan Yu. Orevkov %T Riemann existence theorem and construction of real algebraic curves %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2003 %P 517-531 %V 12 %N 4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1060/ %R 10.5802/afst.1060 %G en %F AFST_2003_6_12_4_517_0
Stepan Yu. Orevkov. Riemann existence theorem and construction of real algebraic curves. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 12 (2003) no. 4, pp. 517-531. doi: 10.5802/afst.1060
[1] , , , JR., , On the difference x3 - y2, Norske Vid. Selsk. Forh. (Trondheim ) 38, p. 65-69 (1965). | Zbl | MR
[2] , On f3(t) - g2(t), Norske Vid. Selsk. Forh. (Trondheim)38, p. 86-87 (1965). | Zbl | MR
[3] , Orientations complexes des courbes algébriques reelles, Thèse doctorale, Univ. Rennes -1 (2000).
[4] , Estimation du genre slice d'un entrelacs, applications aux courbes algébriques réelles, Thèse doctorale, Univ. Paul Sabatier, Toulouse ( 2001 ).
[5] , Construction of new M-curves of 9th degree , Lect. Notes. Math 1524, p. 296-306 (1991). | Zbl | MR
[6] , Smoothing of 6-fold singular points and constructions of 9th degree M-curves, Amer. Math. Soc. Transl. (2) 173, p. 141-155 (1996). | Zbl | MR
[7] , Link theory and oval arrangements of real algebraic curves, Topology 38, p. 779-810 (1999). | Zbl | MR
[8] , A new affine M-sextic, Funct. Anal. and Appl. 32, (1998 ) p. 141-143; II. Russ. Math. Surv. 53, p. 1099-1101 (1999 ). | Zbl | MR
[9] , Complex orientations of M-curves of degree 7, in Topology, Ergodic Theory, Real Algebraic Geometry . Rokhlin's Memorial, Amer. Math. Soc. Transl. ser 2 202, p. 215-227. | Zbl | MR
[10] , Quasipositivity test via unitary representations of braid groups and its applications to real algebraic curves, J. Knot Theory and Ramifications 10, p. 1005-1023 (2001 ). | Zbl | MR
[11] , Polynomial identities and Hauptmoduln , Quart. J. Math (2)32, p. 349-370 (1981). | Zbl | MR
[12] , Progress in the topology of real algebraic varieties over the last six years, Russian Math. Surveys 41, p. 55-82 (1986). | Zbl | MR
[13] , Real algebraic plane curves: constructions with controlled topology, Leningrad J. Math. 1, p. 1059-1134 (1990). | Zbl | MR
[14] , On Davenport's bound for the degree of f3 - g2 and Riemann's existence theorem, Acta Arithm. 71, p. 107-137 (1995); Addenda, ibid. 74 p. 387 (1996). | Zbl | MR
Cité par Sources :