Removability of singularities of harmonic maps into pseudo-riemannian manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 13 (2004) no. 1, pp. 45-71.
@article{AFST_2004_6_13_1_45_0,
     author = {Fr\'ed\'eric H\'elein},
     title = {Removability of singularities of harmonic maps into pseudo-riemannian manifolds},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {45--71},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 13},
     number = {1},
     year = {2004},
     zbl = {1061.58014},
     mrnumber = {2060029},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_2004_6_13_1_45_0/}
}
TY  - JOUR
AU  - Frédéric Hélein
TI  - Removability of singularities of harmonic maps into pseudo-riemannian manifolds
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2004
SP  - 45
EP  - 71
VL  - 13
IS  - 1
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/item/AFST_2004_6_13_1_45_0/
LA  - en
ID  - AFST_2004_6_13_1_45_0
ER  - 
%0 Journal Article
%A Frédéric Hélein
%T Removability of singularities of harmonic maps into pseudo-riemannian manifolds
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2004
%P 45-71
%V 13
%N 1
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/item/AFST_2004_6_13_1_45_0/
%G en
%F AFST_2004_6_13_1_45_0
Frédéric Hélein. Removability of singularities of harmonic maps into pseudo-riemannian manifolds. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 13 (2004) no. 1, pp. 45-71. https://afst.centre-mersenne.org/item/AFST_2004_6_13_1_45_0/

[1] Bryant (R. ), A duality theorem for Willmore surfaces , J. Differential Geom. 20, p. 23-53 (1984). | MR | Zbl

[2] Burstall (F. ) , Ferus ( D.), Leschke (K.), Pedit (F.), Pinkall (U.), Conformal geometry of surfaces in S4 and quaternions, Lecture Notes in Mathematics, Springer, Berlin , Heidelberg, (2002). | MR | Zbl

[3] Gilbarg (D. ) , Trudinger ( N.S.), Elliptic partial differential equations of second order, Springer-Verlag Berlin Heidelberg ( 2001). | MR | Zbl

[4] Hélein (F.) , Regularity and uniqueness of harmonic maps into an ellipsoid , Manuscripta Math. 60, p. 235-257 (1988). | MR | Zbl

[5] Hélein (F.) , Willmore immersions and loop groups, J. Differential Geom. 50, p. 331-385 (1998). | MR | Zbl

[6] Jäger (W.) , Kaul ( H. ), Uniqueness and stability of harmonic maps and their Jacobi fields, Manuscripta Math. 28, p. 269-291 (1979). | MR | Zbl

[7] Ladyzhenskaya ( O.), Ural'Tseva (N.), Linear and quasilinear elliptic equations, Academic Press ( 1968). | MR | Zbl

[8] Morrey (C.B. ) , Multiple integrals in the calculus of variations, Grundleheren 130, Springer Berlin, ( 1966). | MR | Zbl

[9] Sacks (J.) , Uhlenbeck ( K.), The existence of minimal immersions of 2-spheres , Ann. Math. 113, p. 1-24 (1981). | MR | Zbl

[10] Stein (E.) , Singular integrals and differentiability properties of functions, Princeton University Press, ( 1970). | MR | Zbl