logo AFST
A note on exit time for anchored isoperimetry
;
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 4, pp. 817-835.

Let (X n ) n0 be a reversible random walk on a graph G satisfying an anchored isoperimetric inequality. We give upper bounds for exit time (and occupation time in transient case) by X of any set which contains the root. This article covers many results of [11].

Soit (X n ) n0 une marche aléatoire réversible sur un graphe G vérifiant une inégalité isopérimétrique ancrée. Nous obtenons une majoration du temps de sortie de tout ensemble connexe contenant un point ancre (et du temps de passage dans le cas transient) de la marche X.

Published online : 2016-01-21
@article{AFST_2015_6_24_4_817_0,
     author = {Thierry Delmotte and Cl\'ement Rau},
     title = {A note on exit time for anchored isoperimetry},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 24},
     number = {4},
     year = {2015},
     pages = {817-835},
     zbl = {1333.60087},
     mrnumber = {3434258},
     language = {en},
     url={afst.centre-mersenne.org/item/AFST_2015_6_24_4_817_0/}
}
Delmotte, Thierry; Rau, Clément. A note on exit time for anchored isoperimetry. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 4, pp. 817-835. https://afst.centre-mersenne.org/item/AFST_2015_6_24_4_817_0/

[1] Alexander (S.) and Orbach (R.).— Density of states on fractals: “fractons". J. Physique (Paris) Lett., 43, p. 625-631 (1982).

[2] Antal (P.) and Pisztora (A.).— On the chemical distance for supercritical Bernoulli percolation. Ann. Probab., 24(2), p. 1036-1048 (1996). | MR 1404543 | Zbl 0871.60089

[3] Barlow (M. T.).— Random walks on supercritical percolation clusters. Ann. Probab., 32(4), p. 3024-3084 (2004). | MR 2094438 | Zbl 1067.60101

[4] Benjamini (I.), Lyons (R.), and Schramm (O.).— Percolation perturbations in potential theory and random walks. In Random walks and discrete potential theory (Cortona, 1997), Sympos. Math., XXXIX, pages 56-84. Cambridge Univ. Press, Cambridge (1999). | MR 1802426 | Zbl 0958.05121

[5] Berger (N.), Biskup (M.),Hoffman (C.), and Kozma (G.).— Anomalous heat-kernel decay for random walk among bounded random conductances (2007). | Numdam | MR 2446329 | Zbl 1187.60034

[6] Boukhadra (O.).— Anomalous heat-kernel decay for random walk among polynomial lower tail random conductances (2008).

[7] Chen (D.) and Peres (Y.).— Anchored expansion, percolation and speed. Ann. Probab., 32(4), p. 2978-2995, 2004. With an appendix by Gábor Pete. | MR 2094436 | Zbl 1069.60093

[8] Coulhon (T.).— Ultracontractivity and Nash type inequalities. J. Funct. Anal., 141(2), p. 510-539 (1996). | MR 1418518 | Zbl 0887.58009

[9] Coulhon (T.) and Saloff-Coste (L.).— Puissances d’un opérateur régularisant. Ann. Inst. H. Poincaré Probab. Statist., 26(3), p. 419-436 (1990). | Numdam | MR 1066086 | Zbl 0709.47042

[10] de Gennes (P.-G.).— La percolation : un concept unificateur. La Recherche, 7, p. 919-927 (1976).

[11] Delmotte (T.) and Rau (C.).— Exit time for anchored expansion. http, p. //arxiv.org/abs/0903.3892, (2008).

[12] Gabor (P.).— A note on percolation on d , isoperimetric profile via exponential cluster repulsion (2008). | MR 2415145

[13] Grigor’yan (A.).— On the existence of positive fundamental solution of the laplace equation on riemannian manifolds. Mat. Sb. (N.S.), 56(2), p. 349-358 (1987). | Zbl 0612.31007

[14] Grigor’yan (A.).— Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoamericana, 10(2), p. 395-452 (1994). | Zbl 0810.58040

[15] Grimmett (G.R.).— Percolation (1989). | MR 995460

[16] Hofstad (R.V.D.).— The incipient infinite cluster for high-dimensional unoriented percolation. Journal of Statistical Physics (2011).

[17] Lyons (R.), Morris (B.), and Schramm (O.).— Ends in uniform spanning forests. Electron. J. Probab., 13, p. no. 58, 1702-1725 (2008). | MR 2448128 | Zbl 1191.60016

[18] Mathieu (P.) and Remy (E.).— Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab., 32(1A), p. 100-128 (2004). | MR 2040777 | Zbl 1078.60085

[19] Morris (B.) and Peres (Y.).— Evolving sets and mixing. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pages 279-286 (electronic), New York (2003). ACM. | MR 2120476 | Zbl 1192.60023

[20] Nash (J.).— Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 80, p. 931-954 (1958). | MR 100158 | Zbl 0096.06902

[21] Pittet (C.) and Saloff-Coste (L.).— A survey on the relationships between volume growth, isoperimetry , and the behaviour of simple random walk on cayley graphs, with examples. Preprint (2001).

[22] Rau (C.).— Sur le nombre de points visités par une marche aléatoire sur un amas infini de percolation. Bull. Soc. Math. France, 135(1), p. 135-169 (2007). | Numdam | MR 2430203 | Zbl 1156.60074

[23] Schramm (O.) and Xu (Z.).— Hyperbolic and parabolic packings. Discrete Comput. Geom., 14(2), p. 123-149 (1995). | MR 1331923 | Zbl 0830.52010

[24] Sinai (Y.G.).— Theory of phase transition: Rigourous results. Int Series in Natural Phil., 108.

[25] Thomassen (C.).— Isoperimetric inequalities and transient random walks on graphs. Ann. Probab., 20(3), p. 1592-1600 (1992). | MR 1175279 | Zbl 0756.60065

[26] Varopoulos (N. Th.).— Hardy-Littlewood theory for semigroups. J. Funct. Anal., 63(2), p. 240-260 (1985). | MR 803094 | Zbl 0608.47047

[27] Virág (B.).— Anchored expansion and random walk. Geom. Funct. Anal., 10(6), p. 1588-1605 (2000). | MR 1810755 | Zbl 0978.60090