logo AFST
On log K-stability for asymptotically log Fano varieties
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 5, pp. 1013-1024.

La notion de variété asymptotiquement log Fano a été proposée par Cheltsov et Rubinstein. Dans ce travail on montre que, si une variété asymptotiquement log Fano (X,D) vérifie que D est irréductible et -K X -D est big, alors X n’admet pas de métrique Kähler-Einstein conique d’angle 2πβ sur D, quelque soit l’angle rationnel positif β suffisamment petit. Ce résultat donne une réponse positive à une conjecture de Cheltsov et Rubinstein.

The notion of asymptotically log Fano varieties was given by Cheltsov and Rubinstein. We show that, if an asymptotically log Fano variety (X,D) satisfies that D is irreducible and -K X -D is big, then X does not admit Kähler-Einstein edge metrics with angle 2πβ along D for any sufficiently small positive rational number β. This gives an affirmative answer to a conjecture of Cheltsov and Rubinstein.

Publié le : 2016-11-13
DOI : https://doi.org/10.5802/afst.1520
@article{AFST_2016_6_25_5_1013_0,
     author = {Kento Fujita},
     title = {On log K-stability for asymptotically log Fano varieties},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 25},
     number = {5},
     year = {2016},
     pages = {1013-1024},
     doi = {10.5802/afst.1520},
     language = {en},
     url = {afst.centre-mersenne.org/item/AFST_2016_6_25_5_1013_0/}
}
Kento Fujita. On log K-stability for asymptotically log Fano varieties. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 5, pp. 1013-1024. doi : 10.5802/afst.1520. https://afst.centre-mersenne.org/item/AFST_2016_6_25_5_1013_0/

[1] Birkar (C.), Cascini (P.), Hacon (C. D.) and McKernan (J. M).— Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23, no. 2, p. 405-468 (2010).

[2] Berman (R.).— K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics, arXiv:1205.6214; to appear in Invent. Math.

[3] Cheltsov (I. A.) and Rubinstein (Y. A.).— Asymptotically log Fano varieties, Adv. Math. 285, p. 1241-1300 (2015).

[4] Cheltsov (I. A.) and Rubinstein (Y. A.).— On flops and canonical metrics, arXiv:1508.04634.

[5] Fujita (K.).— On K-stability and the volume functions of -Fano varieties, arXiv:1508.04052.

[6] Kaloghiros (A.-S.), Küronya (A.) and Lazić (V.).— Finite generation and geography of models, arXiv:1202.1164; to appear in Advanced Studies in Pure Mathematics, Mathematical Society of Japan, Tokyo.

[7] Kollár (J.) and Mori (S.).— Birational geometry of algebraic varieties, Cambridge Tracts in Math, vol.134, Cambridge University Press, Cambridge (1998).

[8] Lazarsfeld (R.).— Positivity in algebraic geometry, I: Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. (3) 48, Springer, Berlin (2004).

[9] Odaka (Y.).— A generalization of the Ross-Thomas slope theory, Osaka. J. Math. 50, no. 1, p. 171-185 (2013).

[10] Odaka (Y.) and Sun (S.).— Testing log K-stability by blowing up formalism, Ann. Fac. Sci. Toulouse Math. 24, no. 3, p. 505-522 (2015).