logo AFST
Canonical q-deformations in arithmetic geometry
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 5, pp. 1163-1192.

Dans un travail récent avec Bhatt et Morrow, nous avons défini une nouvelle théorie de cohomologie p-adique qui interpole entre cohomologie étale et de de Rham. Un aspect surprenant est que, en coordonnées, on peut calculer cette cohomologie par une q-déformation de la cohomologie de de Rham. Dans cet article, nous allons essayer d’expliquer ce que nous connaissons de ce phénomène, et ce qu’on peut conjecturer.

In recent work with Bhatt and Morrow, we defined a new integral p-adic cohomology theory interpolating between étale and de Rham cohomology. An unexpected feature of this cohomology is that in coordinates, it can be computed by a q-deformation of the de Rham complex, which is thus canonical, at least in the derived category. In this short survey, we try to explain what we know about this phenomenon, and what can be conjectured to hold.

Reçu le : 2016-06-07
Accepté le : 2016-07-24
Publié le : 2017-12-14
DOI : https://doi.org/10.5802/afst.1563
@article{AFST_2017_6_26_5_1163_0,
     author = {Peter Scholze},
     title = {Canonical $q$-deformations in arithmetic geometry},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1163--1192},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 26},
     number = {5},
     year = {2017},
     doi = {10.5802/afst.1563},
     language = {en},
     url = {afst.centre-mersenne.org/item/AFST_2017_6_26_5_1163_0/}
}
Peter Scholze. Canonical $q$-deformations in arithmetic geometry. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 26 (2017) no. 5, pp. 1163-1192. doi : 10.5802/afst.1563. https://afst.centre-mersenne.org/item/AFST_2017_6_26_5_1163_0/

[1] Yves André Différentielles non commutatives et théorie de Galois différentielle ou aux différences, Ann. Sci. École Norm. Sup., Volume 34 (2001) no. 5, pp. 685-739 | Article | MR 1862024

[2] Kazuhiko Aomoto q-analogue of de Rham cohomology associated with Jackson integrals. I, Proc. Japan Acad. Ser. A Math. Sci., Volume 66 (1990) no. 7, pp. 161-164 http://projecteuclid.org/euclid.pja/1195512394 | Article | MR 1078398

[3] Laurent Berger Limites de représentations cristallines, Compos. Math., Volume 140 (2004) no. 6, pp. 1473-1498 | Article | MR 2098398

[4] Pierre Berthelot; Arthur Ogus Notes on crystalline cohomology, Mathematical Notes, Princeton University Press; University of Tokyo Press, 1978, vi+243 pages | MR 0491705 (58 #10908)

[5] Bhargav Bhatt; Matthew Morrow; Peter Scholze Integral p-adic Hodge theory (2016) (https://arxiv.org/abs/1602.03148)

[6] Christophe Breuil Groupes p-divisibles, groupes finis et modules filtrés, Ann. Math., Volume 152 (2000) no. 2, pp. 489-549 | Article | MR 1804530 (2001k:14087)

[7] Renée Elkik Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm. Sup., Volume 6 (1973), p. 553-603 (1974) | Article | MR 0345966 (49 #10692)

[8] Gerd Faltings p-adic Hodge theory, J. Am. Math. Soc., Volume 1 (1988) no. 1, pp. 255-299 | Article | MR 924705 (89g:14008)

[9] Gerd Faltings Does there exist an arithmetic Kodaira-Spencer class?, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) (Contemp. Math.) Volume 241, American Mathematical Society, 1999, pp. 141-146 | Article | MR 1718142

[10] Gerd Faltings Almost étale extensions, Astérisque (2002) no. 279, pp. 185-270 (Cohomologies p-adiques et applications arithmétiques, II) | MR 1922831 (2003m:14031)

[11] Laurent Fargues Quelques résultats et conjectures concernant la courbe, Astérisque (2015) no. 369, pp. 325-374 | MR 3379639

[12] Luc Illusie Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup., Volume 12 (1979) no. 4, pp. 501-661 | Article | MR 565469 (82d:14013)

[13] Frederick H. Jackson q-Difference Equations, Amer. J. Math., Volume 32 (1910) no. 4, pp. 305-314 | Article | MR 1506108

[14] Kiran Kedlaya Rational structures and (φ,Γ)-modules (2013) (http://kskedlaya.org/papers/phigamma-descent.pdf)

[15] Kiran S. Kedlaya; Ruochuan Liu Relative p-adic Hodge theory: foundations, Astérisque (2015) no. 371, 239 pages | MR 3379653

[16] Mark Kisin Crystalline representations and F-crystals, Algebraic geometry and number theory (Progr. Math.) Volume 253, Birkhäuser Boston, Boston, MA, 2006, pp. 459-496 | Article | MR 2263197 (2007j:11163)

[17] Maxim Kontsevich; Don Zagier Periods, Mathematics unlimited—2001 and beyond, Springer, 2001, pp. 771-808 | MR 1852188

[18] Jacob Lurie Higher Algebra (2016) (http://www.math.harvard.edu/~lurie/papers/HA.pdf)

[19] George Lusztig Introduction to quantum groups, Progress in Mathematics, Volume 110, Birkhäuser Boston, Inc., Boston, MA, 1993, xii+341 pages | MR 1227098

[20] Peter Scholze Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci., Volume 116 (2012), pp. 245-313 | Article | MR 3090258

[21] Peter Scholze p-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi, Volume 1 (2013), 77 pages | Article | MR 3090230

[22] Peter Scholze; Jared Weinstein p-adic geometry (Lecture notes from course at UC Berkeley in Fall 2014, available at https://math.berkeley.edu/~jared/Math274/ScholzeLectures.pdf)

[23] Carlos Simpson Mixed twistor structures (1997) (https://arxiv.org/abs/alg-geom/9705006)

[24] Vladimir Voevodsky A 1 -homotopy theory, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998) (1998) no. Extra Vol. I, pp. 579-604 (electronic) | MR 1648048

[25] Nathalie Wach Représentations p-adiques potentiellement cristallines, Bull. Soc. Math. France, Volume 124 (1996) no. 3, pp. 375-400 | Article | MR 1415732