logo AFST
Dynamical moduli spaces and elliptic curves
Laura De Marco
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 2, p. 389-420

In these notes, we present a connection between the complex dynamics of a family of rational functions f t : 1 1 , parameterized by t in a Riemann surface X, and the arithmetic dynamics of f t on rational points 1 (k) where k=(X) or ¯(X). An explicit relation between stability and canonical height is explained, with a proof that contains a piece of the Mordell–Weil theorem for elliptic curves over function fields. Our main goal is to pose some questions and conjectures about these families, guided by the principle of “unlikely intersections” from arithmetic geometry, as in [53]. We also include a proof that the hyperbolic postcritically-finite maps are Zariski dense in the moduli space 𝕄 d of rational maps of any given degree d>1. These notes are based on four lectures at KAWA 2015, in Pisa, Italy, designed for an audience specializing in complex analysis, expanding upon the main results of [6, 17, 14].

Dans ces notes, nous donnons un lien entre la dynamique complexe d’une famille de fractions rationnelles f t : 1 1 , paramétrée par une surface de Riemann X, et la dynamique arithmétique de f t sur les points rationnels de 1 (k), où k=(X). Une relation explicite entre stabilité et hauteur canonique est établie, avec une preuve qui contient une partie du théorème de Mordell–Weil pour les courbes elliptiques sur un corps de fonctions. Notre but principal est de poser quelques questions et conjectures, guidés par le principe des « unlikely intersections » en géométrie arithmétique (cf. [53]). Nous incluons aussi une preuve du fait que les applications hyperboliques postcritiquement-finies sont Zariski denses dans l’espace des modules 𝕄 d des applications rationnelles de degré donné d>1. Ces notes sont basées sur un cours de 4 séances données à KAWA 2015 à Pise, Italie, destinées à une audience spécialisée en analyse complexe, et développent les principaux résultats de [6, 17, 14].

Published online : 2018-06-18
@article{AFST_2018_6_27_2_389_0,
     author = {Laura De Marco},
     title = {Dynamical moduli spaces and elliptic curves},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 27},
     number = {2},
     year = {2018},
     pages = {389-420},
     language = {en},
     url = {https://afst.centre-mersenne.org/item/AFST_2018_6_27_2_389_0}
}
De Marco, Laura. Dynamical moduli spaces and elliptic curves. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 2, pp. 389-420. afst.centre-mersenne.org/item/AFST_2018_6_27_2_389_0/

[1] Lyubich, Mikhail Yur’evich Some typical properties of the dynamics of rational mappings, Usp. Mat. Nauk, Tome 38 (1983) no. 5, p. 197-198 | Zbl 0546.58033

[2] Lars V. Ahlfors Complex analysis. An introduction to the theory of analytic functions of one complex variable, International Series in pure and applied Mathematics, McGraw-Hill Book Company, 1979, xiv+331 pages | Zbl 0395.30001

[3] Yves André Finitude des couples d’invariants modulaires singuliers sur une courbe algébrique plane non modulaire, J. Reine Angew. Math., Tome 505 (1998), pp. 203-208 | Zbl 0918.14010

[4] Matthew Baker A finiteness theorem for canonical heights attached to rational maps over function fields, J. Reine Angew. Math., Tome 626 (2009), pp. 205-233 | Zbl 1187.37133

[5] Matthew Baker; Laura DeMarco Preperiodic points and unlikely intersections, Duke Math. J., Tome 159 (2011) no. 1, pp. 1-29 | Zbl 1242.37062

[6] Matthew Baker; Laura DeMarco Special curves and postcritically-finite polynomials, Forum Math. Pi, Tome 1 (2013), e3, 35 pages (Article ID e3, 35 p.) | Zbl 1320.37022

[7] Matthew Baker; Robert Rumely Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier, Tome 56 (2006) no. 3, pp. 625-688 | Zbl 1234.11082

[8] François Berteloot Bifurcation currents in holomorphic families of rational maps, Pluripotential theory (Lecture Notes in Math.) Tome 2075, Springer, 2013, pp. 1-93 | Zbl 1280.37039

[9] Bodil Branner; John H. Hubbard The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math., Tome 160 (1988) no. 3-4, pp. 143-206 | Zbl 0668.30008

[10] Gregory S. Call; Joseph H. Silverman Canonical heights on varieties with morphisms, Compos. Math., Tome 89 (1993) no. 2, pp. 163-205 | Zbl 0826.14015

[11] Antoine Chambert-Loir Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Tome 595 (2006), pp. 215-235 | Zbl 1112.14022

[12] David A. Cox Primes of the form x 2 +ny 2 . Fermat, class field theory, and complex multiplication, Pure and Applied Mathematics, John Wiley & Sons, 2013, xvi+356 pages | Zbl 1275.11002

[13] Laura De Marco; Xiaoguang Wang; Hexi Ye Bifurcation measures and quadratic rational maps, Proc. Lond. Math. Soc., Tome 111 (2015) no. 1, pp. 149-180 | Zbl 1351.37193

[14] Laura De Marco; Xiaoguang Wang; Hexi Ye Torsion points and the Lattès family, Am. J. Math., Tome 138 (2016) no. 3, pp. 697-732 | Zbl 1364.37101

[15] Laura DeMarco Dynamics of rational maps: a current on the bifurcation locus, Math. Res. Lett., Tome 8 (2001) no. 1-2, pp. 57-66 | Zbl 0991.37030

[16] Laura DeMarco Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Tome 326 (2003) no. 1, pp. 43-73 | Zbl 1032.37029

[17] Laura DeMarco Bifurcations, intersections, and heights, Algebra Number Theory, Tome 10 (2016) no. 5, pp. 1031-1056 | Zbl 06617178

[18] Adrien Douady; John H. Hubbard A proof of Thurston’s topological characterization of rational functions, Acta Math., Tome 171 (1993) no. 2, pp. 263-297 | Zbl 0806.30027

[19] Romain Dujardin The supports of higher bifurcation currents, Ann. Fac. Sci. Toulouse, Math., Tome 22 (2013) no. 3, pp. 445-464 | Zbl 1314.37032

[20] Romain Dujardin Bifurcation currents and equidistribution in parameter space, Frontiers in complex dynamics, Princeton University Press, 2014, pp. 515-566 | Zbl 06490021

[21] Romain Dujardin; Charles Favre Distribution of rational maps with a preperiodic critical point, Am. J. Math., Tome 130 (2008) no. 4, pp. 979-1032 | Zbl 1246.37071

[22] Charles Favre; Thomas Gauthier Classification of special curves in the space of cubic polynomials, Int. Math. Res. Not., Tome 2018 (2018) no. 2, pp. 362-411 | Article

[23] Charles Favre; Juan Rivera-Letelier Équidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann., Tome 335 (2006) no. 2, p. 311-36 (corrigendum in ibid. 339 (2007), no. 4, p. 799-801) | Zbl 1175.11029

[24] Thomas Gauthier Strong bifurcation loci of full Hausdorff dimension, Ann. Sci. Éc. Norm. Supér., Tome 45 (2012) no. 6, pp. 947-984 | Zbl 1326.37036

[25] Thomas Gauthier Higher bifurcation currents, neutral cycles, and the Mandelbrot set, Indiana Univ. Math. J., Tome 63 (2014) no. 4, pp. 917-937 | Zbl 1325.37027

[26] Dragos Ghioca; Liang-Chung Hsia; Thomas J. Tucker Preperiodic points for families of polynomials, Algebra Number Theory, Tome 7 (2013) no. 3, pp. 701-732 | Zbl 1323.37056

[27] Dragos Ghioca; Liang-Chung Hsia; Thomas J. Tucker Preperiodic points for families of rational maps, Proc. Lond. Math. Soc., Tome 110 (2015) no. 2, pp. 395-427 | Zbl 1317.37112

[28] Dragos Ghioca; Holly Krieger; Khoa D. Nguyen; Hexi Ye The dynamical André-Oort conjecture: unicritical polynomials, Duke Math. J., Tome 166 (2017) no. 1, pp. 1-25 | Zbl 06686500

[29] Dragos Ghioca; Hexi Ye A dynamical variant of the André-Oort conjecture, Int. Math. Res. Not., Tome 2018 (2018) no. 8, pp. 2447-2480 | Article

[30] Ricardo Mañé; Paulo Roberto Sad; Dennis P. Sullivan On the dynamics of rational maps, Ann. Sci. Éc. Norm. Supér., Tome 16 (1983), pp. 193-217 | Zbl 0524.58025

[31] David Masser; Umberto Zannier Torsion anomalous points and families of elliptic curves, C. R. Math. Acad. Sci. Paris, Tome 346 (2008) no. 9-10, pp. 491-494 | Zbl 1197.11066

[32] David Masser; Umberto Zannier Torsion anomalous points and families of elliptic curves, Am. J. Math., Tome 132 (2010) no. 6, pp. 1677-1691 | Zbl 1225.11078

[33] David Masser; Umberto Zannier Torsion points on families of squares of elliptic curves, Math. Ann., Tome 352 (2012) no. 2, pp. 453-484 | Zbl 1306.11047

[34] Curtis T. McMullen Families of rational maps and iterative root-finding algorithms, Ann. Math., Tome 125 (1987), pp. 467-493 | Zbl 0634.30028

[35] Curtis T. McMullen Complex Dynamics and Renormalization, Annals of Mathematics Studies, Tome 135, Princeton University Press, 1995, vii+214 pages | Zbl 0822.30002

[36] Curtis T. McMullen; Dennis P. Sullivan Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math., Tome 135 (1998) no. 2, pp. 351-395 | Zbl 0926.30028

[37] Alice Medvedev; Thomas Scanlon Invariant varieties for polynomial dynamical systems, Ann. Math., Tome 179 (2014) no. 1, pp. 81-177 | Zbl 1347.37145

[38] John Milnor Geometry and dynamics of quadratic rational maps, Exp. Math., Tome 2 (1993) no. 1, pp. 37-83 | Zbl 0922.58062

[39] John Milnor Dynamics in One Complex Variable, Annals of Mathematics Studies, Tome 160, Princeton University Press, 2006, viii+304 pages | Zbl 1085.30002

[40] John Milnor On Lattès maps, Dynamics on the Riemann sphere. A Bodil Branner Festschrift, European Mathematical Society, 2006, pp. 9-43 | Zbl 1235.37015

[41] Jonathan Pila O-minimality and the André-Oort conjecture for n , Ann. Math., Tome 173 (2011) no. 3, pp. 1779-1840 | Zbl 1243.14022

[42] Michel Raynaud Courbes sur une variété abélienne et points de torsion, Invent. Math., Tome 71 (1983), pp. 207-233 | Zbl 0564.14020

[43] Michel Raynaud Sous-variétés d’une variété abélienne et points de torsion, Arithmetic and geometry, Vol. I: Arithmetic (Progress in Mathematics) Tome 35, Birkhäuser, 1983, pp. 327-352 | Zbl 0581.14031

[44] Joseph Fels Ritt Prime and composite polynomials, Trans. Am. Math. Soc., Tome 23 (1922), pp. 51-66 | Zbl 48.0079.01

[45] Joseph H. Silverman (personal communication)

[46] Joseph H. Silverman Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, Tome 151, Springer, 1994, xiii+525 pages | Zbl 0911.14015

[47] Joseph H. Silverman The Arithmetic of Dynamical Systems, Graduate Texts in Mathematics, Tome 241, Springer, 2007, ix+511 pages | Zbl 1130.37001

[48] Joseph H. Silverman The arithmetic of elliptic curves, Graduate Texts in Mathematics, Tome 106, Springer, 2009, xx+513 pages | Zbl 1194.11005

[49] Joseph H. Silverman Moduli spaces and arithmetic dynamics, CRM Monograph Series, Tome 30, American Mathematical Society, 2012, vii+140 pages | Zbl 1247.37004

[50] Amaury Thuillier Théorie du potentiel sur les courbes en géométrie analytique non archimedienne. Applications à la théorie d’Arakelov (2005) (Ph. D. Thesis)

[51] Jacob Tsimerman A proof of the André-Oort conjecture for 𝒜 g (2015) (https://arxiv.org/abs/1506.01466)

[52] Xinyi Yuan Big line bundles over arithmetic varieties, Invent. Math., Tome 173 (2008) no. 3, pp. 603-649 | Zbl 1146.14016

[53] Umberto Zannier Some problems of unlikely intersections in arithmetic and geometry, Annals of Mathematics Studies, Tome 181, Princeton University Press, 2012, xi+160 pages | Zbl 1246.14003