On a montré dans [18] que si un corps différentiel de caractéristique est algébriquement clos et clos par extensions de Picard–Vessiot, alors tout espace principal homogène différentiel algébrique sur a un point -rationnel (et réciproquement). Cet article explore s’il est possible, et si oui comment, d’étendre ce résultat au cas de (a) plusieurs dérivations qui commutent, (b) un automorphisme. Pour une notion naturelle d’« extension de Picard–Vessiot généralisée » (dans le cas de plusieurs dérivations) nous donnons un contre-exemple. Nous avons aussi un contre-exemple dans le cas d’un automorphisme. Enfin, nous formulons et démontrons quelques résultats positifs dans le cas de plusieurs dérivations.
In [18] it was proved that if a differential field of characteristic is algebraically closed and closed under Picard–Vessiot extensions then every differential algebraic over for a linear differential algebraic group over has a -rational point (in fact if and only if). This paper explores whether and if so, how, this can be extended to (a) several commuting derivations, (b) one automorphism. Under a natural notion of “generalized Picard–Vessiot extension” (in the case of several derivations), we give a counterexample. We also have a counterexample in the case of one automorphism. We also formulate and prove some positive statements in the case of several derivations.
Accepté le :
Publié le :
Zoé Chatzidakis 1 ; Anand Pillay 2
@article{AFST_2019_6_28_5_813_0, author = {Zo\'e Chatzidakis and Anand Pillay}, title = {Generalized {Picard{\textendash}Vessiot} extensions and differential {Galois} cohomology}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {813--830}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {5}, year = {2019}, doi = {10.5802/afst.1615}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1615/} }
TY - JOUR AU - Zoé Chatzidakis AU - Anand Pillay TI - Generalized Picard–Vessiot extensions and differential Galois cohomology JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 813 EP - 830 VL - 28 IS - 5 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1615/ DO - 10.5802/afst.1615 LA - en ID - AFST_2019_6_28_5_813_0 ER -
%0 Journal Article %A Zoé Chatzidakis %A Anand Pillay %T Generalized Picard–Vessiot extensions and differential Galois cohomology %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 813-830 %V 28 %N 5 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1615/ %R 10.5802/afst.1615 %G en %F AFST_2019_6_28_5_813_0
Zoé Chatzidakis; Anand Pillay. Generalized Picard–Vessiot extensions and differential Galois cohomology. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 5, pp. 813-830. doi : 10.5802/afst.1615. https://afst.centre-mersenne.org/articles/10.5802/afst.1615/
[1] Galois theory of parameterized differential equations and linear differential algebraic groups, Differential equations and quantum groups (IRMA Lectures in Mathematics and Theoretical Physics), Volume 9, European Mathematical Society, 2007, pp. 113-155 | MR | Zbl
[2] On the definitions of difference Galois groups, Model theory with applications to algebra and analysis. Vol. 1 (London Mathematical Society Lecture Note Series), Volume 349, Cambridge University Press, 2008, pp. 73-109 | DOI | MR | Zbl
[3] Model theory of difference fields, Trans. Am. Math. Soc., Volume 351 (1999) no. 8, pp. 2997-3071 | DOI | MR | Zbl
[4] Difference algebra, Interscience Publishers, 1965 | Zbl
[5] Differential Galois theory of linear difference equations, Math. Ann., Volume 342 (2008) no. 2, pp. 333-377 | DOI | MR | Zbl
[6] Definable groups of partial automorphisms, Sel. Math., New Ser., Volume 15 (2009) no. 2, pp. 295-341 | DOI | MR | Zbl
[7] Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973 | MR | Zbl
[8] Differential algebraic groups, Pure and Applied Mathematics, 114, Academic Press Inc., 1985 | MR | Zbl
[9] On algebraic -groups, Trans. Am. Math. Soc., Volume 359 (2007) no. 3, pp. 1325-1337
[10] Generalized differential Galois theory, Trans. Am. Math. Soc., Volume 360 (2008) no. 8, pp. 4441-4495 | DOI | MR | Zbl
[11] Some definable Galois theory and examples, Bull. Symb. Log., Volume 23 (2017) no. 2, pp. 145-159 | DOI | MR | Zbl
[12] Differential fields, Model Theory of Fields (Lecture Notes in Logic), Volume 5, A K Peters; Association for Symbolic Logic, 2006 | Zbl
[13] The model theory of differential fields with finitely many commuting derivations, J. Symb. Log., Volume 65 (2000) no. 2, pp. 885-913 | DOI | MR | Zbl
[14] Triviality of differential Galois cohomologies of linear differential algebraic groups (https://arxiv.org/abs/1707.08620) | Zbl
[15] Geometric stability theory, Oxford Logic Guides, 32, Clarendon Press, 1996 | MR | Zbl
[16] Some foundational questions concerning differential algebraic groups, Pac. J. Math., Volume 179 (1997) no. 1, pp. 179-200 | DOI | MR | Zbl
[17] Differential Galois theory. I, Ill. J. Math., Volume 42 (1998) no. 4, pp. 678-699 | DOI | MR | Zbl
[18] The Picard-Vessiot theory, constrained cohomology, and linear differential algebraic groups, J. Math. Pures Appl., Volume 108 (2017) no. 6, pp. 809-817 | DOI | MR | Zbl
[19] Cohomologie Galoisienne, Lecture Notes in Mathematics, 5, Springer, 1973 | MR | Zbl
[20] On subgroups of the additive group in differentially closed fields, J. Symb. Log., Volume 77 (2012) no. 2, pp. 369-391 | DOI | MR | Zbl
[21] A course in model theory, Lecture Notes in Logic, 40, Association for Symbolic Logic; Cambridge University Press, 2012 | MR | Zbl
[22] On algebraic groups of transformations, Am. J. Math., Volume 77 (1955), pp. 355-391 | DOI | MR | Zbl
Cité par Sources :