Dans ce travail on caractérise les extensions monotones d’homéomorphismes cw-expansifs d’espaces métriques compacts. Pour faire cela, on introduit la notion de “demi cw-expansivité” et on étudie son espace quotient naturel, notament dans le cas de surfaces compactes. On utilise ses résultats pour construire des exemples nouveaux d’homomémorphismes cw-expansifs avec un nombre infini de points fixes et dont l’ensemble errant est vide, dans le cadre des surfaces. Ces exemples sont des quotients de perturbations topologiques de pseudo-Anosov diffeomorphismes. Nous montrons également qu’il existe un homéomorphisme cw-expansif du 2-sphère avec la propriété shadowing.
In this article we characterize monotone extensions of cw-expansive homeomorphisms of compact metric spaces. For this purpose we introduce the notion “half cw-expansivity” and we study its natural quotient space, specially in the case of compact surfaces. These results are applied to construct new examples of cw-expansive homeomorphisms of compact surfaces with infinitely many fixed points and empty wandering set. These examples are quotients of topological perturbations of pseudo-Anosov diffeomorphisms. We also show that there is a cw-expansive homeomorphism with the shadowing property of the 2-sphere.
Accepté le :
Publié le :
M. Achigar 1 ; A. Artigue 1 ; J. Vieitez 1
@article{AFST_2020_6_29_2_221_0, author = {M. Achigar and A. Artigue and J. Vieitez}, title = {New cw-expansive homeomorphisms of surfaces}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {221--246}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {2}, year = {2020}, doi = {10.5802/afst.1630}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1630/} }
TY - JOUR AU - M. Achigar AU - A. Artigue AU - J. Vieitez TI - New cw-expansive homeomorphisms of surfaces JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 221 EP - 246 VL - 29 IS - 2 PB - Université Paul Sabatier, Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1630/ DO - 10.5802/afst.1630 LA - en ID - AFST_2020_6_29_2_221_0 ER -
%0 Journal Article %A M. Achigar %A A. Artigue %A J. Vieitez %T New cw-expansive homeomorphisms of surfaces %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 221-246 %V 29 %N 2 %I Université Paul Sabatier, Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1630/ %R 10.5802/afst.1630 %G en %F AFST_2020_6_29_2_221_0
M. Achigar; A. Artigue; J. Vieitez. New cw-expansive homeomorphisms of surfaces. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 29 (2020) no. 2, pp. 221-246. doi : 10.5802/afst.1630. https://afst.centre-mersenne.org/articles/10.5802/afst.1630/
[1] Hyper-expansive homeomorphisms, Publ. Mat. Urug., Volume 14 (2013), pp. 72-77 | MR | Zbl
[2] Anomalous cw-expansive surface homeomorphisms, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 7, pp. 3511-3518 | DOI | MR | Zbl
[3] Robustly -expansive surface diffeomorphisms, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 5, pp. 2367-2376 | DOI | MR | Zbl
[4] Dendritations of surfaces, Ergodic Theory Dyn. Syst., Volume 38 (2018) no. 8, pp. 2860-2912 | DOI | MR | Zbl
[5] A note on measure-expansive diffeomorphisms, J. Math. Anal. Appl., Volume 428 (2015) no. 1, pp. 713-716 | DOI | MR | Zbl
[6] -expansive homeomorphisms on surfaces, Commun. Contemp. Math., Volume 19 (2017) no. 1 | MR | Zbl
[7] Entropy-expansive maps, Trans. Am. Math. Soc., Volume 164 (1972), pp. 323-331 | DOI | MR | Zbl
[8] Stable and unstable sets of perturbations of expansive homeomorphisms of surfaces, Nonlinearity, Volume 12 (1999) no. 2, pp. 321-332 | DOI | MR | Zbl
[9] Decompositions of manifolds, Pure and Applied Mathematics, 124, Academic Press Inc., 1986, xii+317 pages | MR | Zbl
[10] Entropy-expansiveness for partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 12, pp. 4195-4207 | MR | Zbl
[11] Perturbation of continuum-wise expansive homeomorphisms, J. Dyn. Syst. Geom. Theor., Volume 3 (2005) no. 2, pp. 115-120 | MR | Zbl
[12] Expansive homeomorphisms of compact surfaces are pseudo-Anosov, Osaka J. Math., Volume 27 (1990) no. 1, pp. 117-162 | MR | Zbl
[13] Continuum-wise expansive homeomorphisms, Can. J. Math., Volume 45 (1993) no. 3, pp. 576-598 | DOI | MR | Zbl
[14] Topology. Vol. II, Academic Press Inc.; PWN-Polish Scientific Publishers, 1968, xiv+608 pages (new edition, revised and augmented, translated from the French by A. Kirkor) | Zbl
[15] Continuum-wise expansive homeomorphisms with shadowing, J. Chungcheong Math. Soc., Volume 29 (2016) no. 1, pp. 151-155 | MR
[16] Persistence in expansive systems, Ergodic Theory Dyn. Syst., Volume 3 (1983) no. 4, pp. 567-578 | DOI | MR | Zbl
[17] Expansive homeomorphisms of surfaces, Bol. Soc. Bras. Mat., Nova Sér., Volume 20 (1989) no. 1, pp. 113-133 | DOI | MR | Zbl
[18] Concerning upper semi-continuous collections of continua, Trans. Am. Math. Soc., Volume 27 (1925) no. 4, pp. 416-428 | DOI | MR | Zbl
[19] A generalization of expansivity, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 1, pp. 293-301 | DOI | MR | Zbl
[20] Expansive measures, Publicações Matemáticas do IMPA, Instituto Nacional de Matemática Pura e Aplicada (IMPA), 2013, viii+89 pages ( Colóquio Brasileiro de Matemática. [29th Brazilian Mathematics Colloquium]) | Zbl
[21] Continuum Theory: An Introduction, Pure and Applied Mathematics, Marcel Dekker, 158, Marcel Dekker, 1992 | Zbl
[22] Measure-preserving homeomorphisms and metrical transitivity, Ann. Math., Volume 42 (1941), pp. 874-920 | DOI | MR | Zbl
[23] Entropy-expansiveness and domination for surface diffeomorphisms, Rev. Mat. Complut., Volume 21 (2008) no. 2, pp. 293-317 | MR | Zbl
[24] On measure expansive diffeomorphisms, Proc. Am. Math. Soc., Volume 143 (2015) no. 2, pp. 811-819 | DOI | MR | Zbl
[25] Monotone transformations of two-dimensional manifolds, Ann. Math., Princeton, Volume 39 (1938) no. 4, pp. 851-862 | DOI | MR | Zbl
[26] An introduction to ergodic theory, Graduate Texts in Mathematics, 79, Springer, 1982, ix+250 pages | MR | Zbl
[27] Topology of Manifolds, Colloquium Publications, 32, American Mathematical Society, 1949, ix+402 pages | MR | Zbl
Cité par Sources :