Let be a smooth bounded domain in and let . We prove here the existence of nonnegative solutions in , to the problem
where denotes the unit outer normal to , and denotes some function defined as:
Moreover, we prove the tight convergence of towards one of the first eingenfunctions for the first Laplacian Operator on when goes to .
Soit un domaine borné et régulier dans et soit . On montre dans cet article l’existence de solutions positives dans , au problème
où est le vecteur normal sortant de , et est une fonction dans définie par :
De plus, on montre la convergence de vers une des premières fonctions propres de l’opérateur Laplacian sur quand tend vers .
@article{AFST_2007_6_16_4_905_0, author = {Mouna Kra{\"\i}em}, title = {On some nonlinear partial differential equations involving the {1-Laplacian}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {905--921}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 16}, number = {4}, year = {2007}, doi = {10.5802/afst.1170}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1170/} }
TY - JOUR AU - Mouna Kraïem TI - On some nonlinear partial differential equations involving the 1-Laplacian JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2007 SP - 905 EP - 921 VL - 16 IS - 4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1170/ DO - 10.5802/afst.1170 LA - en ID - AFST_2007_6_16_4_905_0 ER -
%0 Journal Article %A Mouna Kraïem %T On some nonlinear partial differential equations involving the 1-Laplacian %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2007 %P 905-921 %V 16 %N 4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1170/ %R 10.5802/afst.1170 %G en %F AFST_2007_6_16_4_905_0
Mouna Kraïem. On some nonlinear partial differential equations involving the 1-Laplacian. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 16 (2007) no. 4, pp. 905-921. doi : 10.5802/afst.1170. https://afst.centre-mersenne.org/articles/10.5802/afst.1170/
[1] Alter (F.), Cazelles (V.), Chambolle (A.).— A characterization of convex calibrable sets in , prepublication. | Zbl
[2] Alter (F.), Cazelles (V.), Chambolle (A.).— Evolution of convex sets in the plane by the minimizing total variation flow , Prépublication.
[3] Andreu (F.), Caselles (V.), Mazón (J. M.).— A strongly degenerate quasilinear elliptic equation, Nonlinear Anal. 61 , n 4, p. 637–669 (2005). | MR
[4] Bellettini (G.), Caselles (V.), Novaga (M.).— Explicit solutions of the eigenvalue problem .
[5] Cheeger (J.).— A lower bound for the smallesteigenvalue of the Laplacian in Problems in Analysis, Symposium in honor of Salomon Bochner, Ed : RC Ganning, Princeton Univ. Press, p.195-199 (1970). | MR | Zbl
[6] De Giorgi, Carriero (M.), Leaci (A.).— Existence Theorem for a minimum problem with a Free dicountinuity set, A.R.M.A, 108, p. 195-218 (1989). | MR | Zbl
[7] Demengel (F.).— On Some Nonlinear Partial Differential Equations Involving The 1-Laplacian and Critical Sobolev exponent, ESAIM: Control, Optimisation and Calculus of Variations, 4, p. 667-686 (1999). | Numdam | MR | Zbl
[8] Demengel (F.).— Some compactness result for some spaces of functions with bounded derivatives, A.R.M.A. 105(2), p. 123-161 (1989). | MR | Zbl
[9] Demengel (F.).— Théorèmes d’existence pour des équations avec l’opérateur -Laplacien, première valeur propre pour -, C.R Acad. Sci. Paris, Ser. I334, p. 1071-1076 (2002).
[10] Demengel (F.).— Some existence’s results for noncoercive Laplacian operator, Asymptot. Anal. 43, no. 4, p. 287-322 (2005).
[11] Demengel (F.).— Functions locally almost harmonic, Applicable Analysis, Vol.83, N°9, September 2004, p. 865-896. | MR | Zbl
[12] Demengel (F.).— On some nonlinear partial differential equations involving the "Laplacian " and critical Sobolev exponent, ESAIM Control Optim. Calc. Var. 4, p. 667–686 (1999). | Numdam | MR | Zbl
[13] Ekeland (I.), Temam (R.).— Convex Analysis and variational problems, North-Holland, 1976. | MR | Zbl
[14] Giusti (E.).— Minimal surfaces and functions of bounded variation, Notes de cours rédigés pr G.H. Williams.Departement of Mathematics Australian National University, Canberra (1977), et Birkhauser (1984). | MR | Zbl
[15] Giaquinta (M.), Modica (G.), and Soucek (J.).— Cartesian Currents in the Calculus of Variations I, LNM, Vol 37, Springer, 1997. | MR | Zbl
[16] Guedda (M.), Veron (L.).— Quasilinear elliptic equations involving critical sobolev exponents, Nonlinear Analysis, Theory, Methods and Applications, 13, p. 879-902 (1989). | MR | Zbl
[17] Kohn (R.V.), Temam (R.).— Dual spaces of stress and strains with applications to Hencky plasticity, Appl. Math. Optim (10), p. 1-35 (1983). | MR | Zbl
[18] Lions (P.L.).— The concentration-compactness principle in the calculus of variations. The limit case, I et II. Rev. Mat. Iberoamericana 1, n 1, p. 145–201 (1985). | MR | Zbl
[19] Strang (G.), Temam (R.).— Functions with bounded derivatives, A.R.M.A., p. 493-527 (1980). | MR | Zbl
[20] Tolksdorf (P.).— Regularity for a more general class of quasilinear elliptic equations, Journal of Differential Equations, 51, p. 126-150 (1984). | MR | Zbl
[21] Vazquez (J.L.).— A Strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12, p. 191-202 (1984). | MR | Zbl
Cited by Sources: