On some nonlinear partial differential equations involving the 1-Laplacian
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 16 (2007) no. 4, pp. 905-921.

Let Ω be a smooth bounded domain in N ,N>1 and let n * . We prove here the existence of nonnegative solutions u n in BV(Ω), to the problem

(Pn)-divσ+2nΩu-1sign+(u)=0inΩ,σ·u=|u|inΩ,uisnotidenticallyzero,-σ·nu=uonΩ,

where n denotes the unit outer normal to Ω, and sign + (u) denotes some L (Ω) function defined as:

sign +(u).u=u+,0 sign +(u)1.

Moreover, we prove the tight convergence of u n towards one of the first eingenfunctions for the first 1-Laplacian Operator -Δ 1 on Ω when n goes to +.

Soit Ω un domaine borné et régulier dans N ,N>1 et soit n * . On montre dans cet article l’existence de solutions positives u n dans BV(Ω), au problème

(Pn)-divσ+2nΩu-1sign+(u)=0dansΩ,σ·u=|u|dansΩ,un'estpasidentiquementnulle,-σ·nu=usurΩ,

n est le vecteur normal sortant de Ω, et sign + (u) est une fonction dans L (Ω) définie par :

sign +(u).u=u+,0 sign +(u)1.

De plus, on montre la convergence de u n vers une des premières fonctions propres de l’opérateur 1-Laplacian -Δ 1 sur Ω quand n tend vers +.

DOI: 10.5802/afst.1170

Mouna Kraïem 1

1 Université de Cergy Pontoise , Département de Mathématiques, 2, avenue Adolphe Chauvin, 95302 Cergy Pontoise Cedex, France
@article{AFST_2007_6_16_4_905_0,
     author = {Mouna Kra{\"\i}em},
     title = {On some nonlinear partial differential equations involving the {1-Laplacian}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {905--921},
     publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 16},
     number = {4},
     year = {2007},
     doi = {10.5802/afst.1170},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1170/}
}
TY  - JOUR
AU  - Mouna Kraïem
TI  - On some nonlinear partial differential equations involving the 1-Laplacian
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2007
SP  - 905
EP  - 921
VL  - 16
IS  - 4
PB  - Université Paul Sabatier, Institut de Mathématiques
PP  - Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1170/
DO  - 10.5802/afst.1170
LA  - en
ID  - AFST_2007_6_16_4_905_0
ER  - 
%0 Journal Article
%A Mouna Kraïem
%T On some nonlinear partial differential equations involving the 1-Laplacian
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2007
%P 905-921
%V 16
%N 4
%I Université Paul Sabatier, Institut de Mathématiques
%C Toulouse
%U https://afst.centre-mersenne.org/articles/10.5802/afst.1170/
%R 10.5802/afst.1170
%G en
%F AFST_2007_6_16_4_905_0
Mouna Kraïem. On some nonlinear partial differential equations involving the 1-Laplacian. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 16 (2007) no. 4, pp. 905-921. doi : 10.5802/afst.1170. https://afst.centre-mersenne.org/articles/10.5802/afst.1170/

[1] Alter (F.), Cazelles (V.), Chambolle (A.).— A characterization of convex calibrable sets in N , prepublication. | Zbl

[2] Alter (F.), Cazelles (V.), Chambolle (A.).— Evolution of convex sets in the plane by the minimizing total variation flow , Prépublication.

[3] Andreu (F.), Caselles (V.), Mazón (J. M.).— A strongly degenerate quasilinear elliptic equation, Nonlinear Anal. 61 , n 4, p. 637–669 (2005). | MR

[4] Bellettini (G.), Caselles (V.), Novaga (M.).— Explicit solutions of the eigenvalue problem - div (Du |Du|)=u.

[5] Cheeger (J.).— A lower bound for the smallesteigenvalue of the Laplacian in Problems in Analysis, Symposium in honor of Salomon Bochner, Ed : RC Ganning, Princeton Univ. Press, p.195-199 (1970). | MR | Zbl

[6] De Giorgi, Carriero (M.), Leaci (A.).— Existence Theorem for a minimum problem with a Free dicountinuity set, A.R.M.A, 108, p. 195-218 (1989). | MR | Zbl

[7] Demengel (F.).— On Some Nonlinear Partial Differential Equations Involving The 1-Laplacian and Critical Sobolev exponent, ESAIM: Control, Optimisation and Calculus of Variations, 4, p. 667-686 (1999). | Numdam | MR | Zbl

[8] Demengel (F.).— Some compactness result for some spaces of functions with bounded derivatives, A.R.M.A. 105(2), p. 123-161 (1989). | MR | Zbl

[9] Demengel (F.).— Théorèmes d’existence pour des équations avec l’opérateur 1-Laplacien, première valeur propre pour -Δ 1 , C.R Acad. Sci. Paris, Ser. I334, p. 1071-1076 (2002).

[10] Demengel (F.).— Some existence’s results for noncoercive 1-Laplacian operator, Asymptot. Anal. 43, no. 4, p. 287-322 (2005).

[11] Demengel (F.).— Functions locally almost 1-harmonic, Applicable Analysis, Vol.83, N°9, September 2004, p. 865-896. | MR | Zbl

[12] Demengel (F.).— On some nonlinear partial differential equations involving the "1-Laplacian " and critical Sobolev exponent, ESAIM Control Optim. Calc. Var. 4, p. 667–686 (1999). | Numdam | MR | Zbl

[13] Ekeland (I.), Temam (R.).— Convex Analysis and variational problems, North-Holland, 1976. | MR | Zbl

[14] Giusti (E.).— Minimal surfaces and functions of bounded variation, Notes de cours rédigés pr G.H. Williams.Departement of Mathematics Australian National University, Canberra (1977), et Birkhauser (1984). | MR | Zbl

[15] Giaquinta (M.), Modica (G.), and Soucek (J.).— Cartesian Currents in the Calculus of Variations I, LNM, Vol 37, Springer, 1997. | MR | Zbl

[16] Guedda (M.), Veron (L.).— Quasilinear elliptic equations involving critical sobolev exponents, Nonlinear Analysis, Theory, Methods and Applications, 13, p. 879-902 (1989). | MR | Zbl

[17] Kohn (R.V.), Temam (R.).— Dual spaces of stress and strains with applications to Hencky plasticity, Appl. Math. Optim (10), p. 1-35 (1983). | MR | Zbl

[18] Lions (P.L.).— The concentration-compactness principle in the calculus of variations. The limit case, I et II. Rev. Mat. Iberoamericana 1, n 1, p. 145–201 (1985). | MR | Zbl

[19] Strang (G.), Temam (R.).— Functions with bounded derivatives, A.R.M.A., p. 493-527 (1980). | MR | Zbl

[20] Tolksdorf (P.).— Regularity for a more general class of quasilinear elliptic equations, Journal of Differential Equations, 51, p. 126-150 (1984). | MR | Zbl

[21] Vazquez (J.L.).— A Strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12, p. 191-202 (1984). | MR | Zbl

Cited by Sources: