logo AFST
De l’application des méthodes valuatives en algèbre différentielle
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 17 (2008) no. 4, pp. 673-717.

Valuation theory is a classical achievement of the works of geometers and arithmeticians of the nineteen century. In contrast, its apparition in Differential Algebra is far to be well known and only appear in the second half of the twenty century. The aim of this paper is to give an overview of the use of valuations in Differential Algebra. Thanks to the contributions of many autors, we try to show how valuations might help to unify results coming from geometry, arithmetic and differrential equations.

La théorie des valuations née des travaux des géomètres et arithméticiens du XIX ê me siècle, fit une apparition tardive et encore peu connue au XX ê me siècle en algèbre différentielle. Dans cet article, à travers les contributions de nombreux auteurs, nous présentons une synthèse des divers apports de la théorie des valuations à l’étude des équations différentielles. Nous insistons sur le caractère unificateur de la théorie des valuations en illustrant comment elles permettent de mettre en parallèle des résultats de géométrie et d’arithmétique avec des résultats concernant les équations différentielles.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1198
Guillaume Duval 1

1 1, Chemin du Chateau, 76 430 Les Trois Pierres (France)
@article{AFST_2008_6_17_4_673_0,
     author = {Guillaume Duval},
     title = {De l{\textquoteright}application des m\'ethodes valuatives en alg\`ebre diff\'erentielle},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {673--717},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {6e s{\'e}rie, 17},
     number = {4},
     year = {2008},
     doi = {10.5802/afst.1198},
     zbl = {1160.13001},
     mrnumber = {2499775},
     language = {fr},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1198/}
}
TY  - JOUR
TI  - De l’application des méthodes valuatives en algèbre différentielle
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2008
DA  - 2008///
SP  - 673
EP  - 717
VL  - 6e s{\'e}rie, 17
IS  - 4
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1198/
UR  - https://zbmath.org/?q=an%3A1160.13001
UR  - https://www.ams.org/mathscinet-getitem?mr=2499775
UR  - https://doi.org/10.5802/afst.1198
DO  - 10.5802/afst.1198
LA  - fr
ID  - AFST_2008_6_17_4_673_0
ER  - 
%0 Journal Article
%T De l’application des méthodes valuatives en algèbre différentielle
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2008
%P 673-717
%V 6e s{\'e}rie, 17
%N 4
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1198
%R 10.5802/afst.1198
%G fr
%F AFST_2008_6_17_4_673_0
Guillaume Duval. De l’application des méthodes valuatives en algèbre différentielle. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 17 (2008) no. 4, pp. 673-717. doi : 10.5802/afst.1198. https://afst.centre-mersenne.org/articles/10.5802/afst.1198/

[1] Bellman (R.).— Stability Theory of Differential Equations, Dover (1969). | MR: 247201

[2] Bertrand (D.).— Groupes algébriques et équations différentielles linéaires. Astérisque, (206) :Exp. No. 750, 4, p. 183-204 (1992). | Numdam | MR: 1206068 | Zbl: 0813.12004

[3] Borel (E.).— Mémoire sur les Séries Divergentes. Annales. Sci. de l’ENS, 16(3), p. 1-131 (1899). | Numdam

[4] Bourbaki (N.).— Fonctions d’Une Variable Réelle. Chap V. 2nd ed. Hermann, Paris (1961).

[5] Cano (F.), Moussu (R.), and Rolin (J.-P.).— Non Oscillating Integral Curves and Valuations (2003).

[6] Cartier (P.).— Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents, Astérisque, (282) :Exp. No. 885, viii, p. 137-173 (2002). | Numdam | MR: 1975178 | Zbl: 1085.11042

[7] Cassels (J.W.S).— Local Fields. London Mathematical Society. Cambridge University Press (1986). | MR: 861410 | Zbl: 0595.12006

[8] Chevalley (C.).— Introduction to the theory of Algebraic Functions of one Variable, Mathematical Surveys, No. VI. American Mathematical Society, Providence, R.I. (1963). | MR: 181641 | Zbl: 0045.32301

[9] Del Blanco Maraña (J. M.).— Cuerpos de series generalizadas y cuerpos de Hardy, PhD thesis, Universidad de Valladolid, Mai (2006).

[10] Deligne (P.).— Catégories Tannakiennes. In The Grothendieck Festschrift, Vol. II, volume 87 of Progr. Math., p. 111-195. Birkhäuser Boston, Boston, MA (1990). | MR: 1106898 | Zbl: 0727.14010

[11] Dieudonné (J.).— Abrégé d’Histoire des Mathématiques 1700-1900, Hermann, Paris (1978). | Zbl: 0656.01001

[12] Duval (G.).— Actions des groupes de Galois différentiels sur les espaces de valuations. PhD thesis, Université de Toulouse, Octobre (2005).

[13] Duval (G.).— Valuations and differential galois groups, Trans. of the AMS À paraitre, p. 1-50 (2008). | MR: 2839103 | Zbl: 1248.12003

[14] Fortuny (P.).— De l’Hôpital valuations and complex planar foliations, Rev. Semin. Iberoam. Mat. Singul. Tordesillas, 2(2), p. 3-19 (1998). | MR: 1972150

[15] Hardy (G.-H.).— Properties of Logarithmico-Exponential Functions, Proc. London. Math. Soc., 10, p. 54-90 (1912). | JFM: 42.0437.02 | MR: 1576038

[16] Hardy (G.-H.).— Orders of Infinity, volume 12, Cambridge Tracts in Mathematics (1924).

[17] Hartshorne (R.).— Algebraic Geometry, volume 52 of Graduate Texts in Mathematics, Springer-Verlag, New York (1977). | MR: 463157 | Zbl: 0367.14001

[18] Hellegouarch (Y.).— Invitation aux mathématiques de Fermat-Wiles, Enseignement des Mathématiques. Masson, Paris (1997). | MR: 1475927 | Zbl: 1030.11001

[19] Honda (T.).— Algebraic Differential Equations. In Symposia Mathematica, Vol. XXIV (Sympos., INDAM, Rome, 1979), p. 169-204, Academic Press, London (1981). | MR: 619247 | Zbl: 0464.12013

[20] Ince (E. L.).— Ordinary Differential Equations, Dover Publications, New York (1944). | MR: 10757 | Zbl: 0063.02971

[21] Jacob (B.).— Le Théorème de Cebotarev, p. 1-24 (2002).

[22] Kaplansky (I.).— Maximal fields with valuations. Duke Math. Journal, 9, p. 303-321 (1942). | MR: 6161 | Zbl: 0063.03135

[23] Katz (N. M.).— Nilpotent connections and the monodromy theorem : Applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math., (39), p. 175-232 (1970). | EuDML: 103909 | Numdam | MR: 291177 | Zbl: 0221.14007

[24] Kolchin (E. R.).— Rational approximation to solutions of algebraic differential equations, Proc. Amer. Math. Soc., 10, p. 238-244 (1959). | MR: 107641 | Zbl: 0092.27302

[25] Lang (S.).— Algebra, volume 211 of Graduate Texts in Mathematics, Springer-Verlag, New York (2002). | MR: 1878556 | Zbl: 0984.00001

[26] Lion (J.-M.), Miller (C.), and Speissegger (P.).— Differential equations over polynomially bounded o-minimal structures, Proc. Amer. Math. Soc., 131(1) :175-183 (electronic) (2003). | MR: 1929037 | Zbl: 1007.03039

[27] Magid (A.R.).— Lectures on Differential Galois Theory, volume 7. A.M.S. Col. Univ. Lectures Series (1994). | MR: 1301076 | Zbl: 0855.12001

[28] Maric (V.).— Differential and algebraic equations in Hardy fields, In Differential equations and applications, Vol. I, II (Columbus, OH, 1988), p. 179-182, Ohio Univ. Press, Athens, OH (1989). | MR: 1026216 | Zbl: 0719.34098

[29] Martinet (J.) and Ramis (J.-P.).— Théorie de Galois Différentielle et Resommation, In Computer algebra and differential equations, Comput. Math. Appl., p. 115-214, Academic Press, London (1990). | MR: 1038060 | Zbl: 0722.12007

[30] Martinet (J.) and Ramis (J.-P.).— Elementary Acceleration and Multisummability. Annales de l’Institut Henri Poincaré, Physique Théorique, 86(4), p. 331-401 (1991). | EuDML: 76535 | Numdam | MR: 1128863 | Zbl: 0748.12005

[31] Matsuda (M.).— First Order Algebraic Differential Equations, volume 804 of Lecture Notes in Mathematics. Springer-Verlag (1980). | MR: 576060 | Zbl: 0447.12014

[32] Muntingh (G.), Van der Put (M.).— Order one equation with the painlevé Property, peprint (2006). | MR: 2330735 | Zbl: 1202.34157

[33] Picard (E.).— Traité d’Analyse, Tome III, 2nd ed. Gauthier-Villard, Paris (1908). | JFM: 40.0330.15

[34] Robinson (A.).— On the real closure of a Hardy field. In Theory of sets and topology (in honour of Felix Hausdorff, 1868-1942), p. 427-433, VEB Deutsch. Verlag Wissensch., Berlin (1972). | MR: 340225 | Zbl: 0298.02061

[35] Roquette (P.).— History of valuation theory. I. In Valuation theory and its applications, Vol. I (Saskatoon, SK, 1999), volume 32 of Fields Inst. Commun., p. 291-355, Amer. Math. Soc., Providence, RI (2002). | MR: 1928376 | Zbl: pre01824114

[36] Rosenlicht (M.).— On the explicit solvability of certain transcendental equations, Inst. Hautes Études Sci. Publ. Math., (36), p. 15-22 (1969). | EuDML: 103891 | Numdam | MR: 258808 | Zbl: 0181.32404

[37] Rosenlicht (M.).— An analogue of l’Hospital’s rule, Proc. Amer. Math. Soc., 37, p. 369-373 (1973). | MR: 318117 | Zbl: 0253.12105

[38] Rosenlicht (M.).— Differential Valuations, Pacific J. Math., 86(1), p. 301-319 (1980). | MR: 586879 | Zbl: 0401.12024

[39] Rosenlicht (M.).— Hardy Fields, J. Math. Anal. Appl., 93(2), p. 297-311 (1983). | MR: 700146 | Zbl: 0518.12014

[40] Rosenlicht (M.).— The rank of a Hardy field, Trans. Amer. Math. Soc., 280(2), p. 659-671 (1983). | MR: 716843 | Zbl: 0536.12015

[41] Seidenberg (A.).— Derivations and valuation rings, In Contributions to algebra (collection of papers dedicated to Ellis Kolchin), p. 343-347, Academic Press, New York (1977). | MR: 485814 | Zbl: 0374.13004

[42] Shackell (J.).— Rosenlicht Fields, Trans. Amer. Math. Soc., 335(2), p. 579-595 (1993). | MR: 1085945 | Zbl: 0772.34044

[43] Singer (M.) and Van der Put (M.).— Galois Theory of Linear Differential Equations, volume 328 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag (2003). | MR: 1960772 | Zbl: 1036.12008

[44] Singer (M. F.).— Asymptotic Behaviour of Solutions of Differential Equations and Hardy Fields : Preliminary Report (1975).

[45] Singer (M. F.).— Solutions of Linear Differential Equations in Function Fields of one Variable, Proc. Amer. Math. Soc., 54, p. 69-72 (1976). | MR: 387260 | Zbl: 0318.12106

[46] Stichtenoth (H.).— Algebraic Function Fields and Codes, Universitext, Springer-Verlag, Berlin (1993). | MR: 1251961 | Zbl: 0816.14011

[47] Thom (R.).— Paraboles et Catastrophes, Flammarion (1983). | MR: 3309092

[48] Vaquié (M.).— Valuations. In Resolution of Singularities, number 181 in Progress in Mathematics, p. 439-590, Birkhauser, Basel (2000). | MR: 1748635 | Zbl: 1003.13001

[49] Zariski (O.) and Samuel (P.).— Commutative Algebra, volume II of The University Series in Higher Mathematics, D. Van Nostrand Company, INC. (1960). | MR: 120249 | Zbl: 0121.27801

Cited by Sources: