logo AFST
A p-adic approach to local analytic dynamics: analytic conjugacy of analytic maps tangent to the identity
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 3, pp. 611-634.

In this note, we consider the question of local analytic equivalence of analytic functions which fix the origin and are tangent to the identity. All mappings and equivalences are considered in the non-archimedean context e.g. all norms can be considered p-adic norms. We show that any two mappings f and g which are formally equivalent are also analytically equivalent. We consider the related questions of roots and centralizers for analytic mappings. In this setting, anything which can be done formally can also be done analytically.

Nous considérons la question d’équivalence locale de fonctions analytiques qui fixent l’origine et sont tangentes à l’identité. Toutes les fonctions et équivalences sont dans le contexte nonarchimédien, c’est-à-dire que nous pouvons considérer les normes comme étant des normes p-adiques. Nous démontrons que deux fonctions f et g formellement équivalentes sont aussi équivalentes analytiquement. Nous considérons la question des racines et centraliseurs pour les fonctions analytiques. Dans ce contexte, tout ce qui peut être prouvé formellement peut aussi être prouvé analytiquement.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1217
Adrian Jenkins 1; Steven Spallone 2

1 Department of Mathematics, Kansas State University, Manhattan, KS, 66506
2 Department of Mathematics, University of Oklahoma, Norman, OK, 73072
@article{AFST_2009_6_18_3_611_0,
     author = {Adrian Jenkins and Steven Spallone},
     title = {A $p$-adic approach to local analytic dynamics: analytic conjugacy of analytic maps tangent to the identity},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {611--634},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 18},
     number = {3},
     year = {2009},
     doi = {10.5802/afst.1217},
     zbl = {1185.37210},
     mrnumber = {2582444},
     language = {en},
     url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1217/}
}
TY  - JOUR
TI  - A $p$-adic approach to local analytic dynamics: analytic conjugacy of analytic maps tangent to the identity
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2009
DA  - 2009///
SP  - 611
EP  - 634
VL  - Ser. 6, 18
IS  - 3
PB  - Université Paul Sabatier, Toulouse
UR  - https://afst.centre-mersenne.org/articles/10.5802/afst.1217/
UR  - https://zbmath.org/?q=an%3A1185.37210
UR  - https://www.ams.org/mathscinet-getitem?mr=2582444
UR  - https://doi.org/10.5802/afst.1217
DO  - 10.5802/afst.1217
LA  - en
ID  - AFST_2009_6_18_3_611_0
ER  - 
%0 Journal Article
%T A $p$-adic approach to local analytic dynamics: analytic conjugacy of analytic maps tangent to the identity
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2009
%P 611-634
%V Ser. 6, 18
%N 3
%I Université Paul Sabatier, Toulouse
%U https://doi.org/10.5802/afst.1217
%R 10.5802/afst.1217
%G en
%F AFST_2009_6_18_3_611_0
Adrian Jenkins; Steven Spallone. A $p$-adic approach to local analytic dynamics: analytic conjugacy of analytic maps tangent to the identity. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 18 (2009) no. 3, pp. 611-634. doi : 10.5802/afst.1217. https://afst.centre-mersenne.org/articles/10.5802/afst.1217/

[1] Ahern (P.), Rosay (J.-P.).— Entire functions, in the classification of differentiable germs tangent to the identity, in one or two variables, Trans. of the Amer. Math. Soc. 347, no. 2, p. 543-572 (1995). | MR: 1276933 | Zbl: 0815.30018

[2] Arnold (V. I.).— Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1983. | MR: 695786 | Zbl: 0507.34003

[3] Benedetto (R.) .— Hyperbolic maps in p-adic dynamics, Ergodic Th. Dyn. Sys., 21, p. 1-11 (2001). | MR: 1826658 | Zbl: 0972.37027

[4] Bryuno (A. D.).— Analytic form of differential equations, I, Trans. Moscow Math. Soc. 25, p. 131-288 (1971). | Zbl: 0272.34018

[5] Camacho (C.).— On the local structure of conformal mappings and holomorphic vector fields in C 2 , Bull. Soc. Math. de France Astérisque, (1978). | MR: 542732 | Zbl: 0415.30015

[6] Ecalle (J.).— Sur les functions résurgentes, I, II, Publ. Math. d’Orsay, Université de Paris-Sud, Orsay (1981).

[7] Fatou (P.).— Sur les equation fonctionnelles, Bull. Soc. Math. France 47, p. 161-271 (1919). | EuDML: 86391 | JFM: 47.0921.02 | Numdam | MR: 1504787

[8] Harish-Chandra .— Harmonic Analysis on Reductive p-adic Groups, Proc. of Symp. in Pure Math., XXVI, Amer. Math. Soc., Providence, R.I., p. 167-192 (1973). | MR: 340486 | Zbl: 0289.22018

[9] Herman (M.), Yoccoz (J.-C.).— Generalizations of some theorems of small divisors to non-Archimedean fields, in Geometric Dynamics (Rio de Janeiro, 1981). Springer, Berlin, p. 408-447 (1983). | MR: 730280 | Zbl: 0528.58031

[10] Il’yashenko (Y. S.).— Nonlinear Stokes Phenomena. Adv. in Soviet Math., vol. 14, Amer. Math. Soc., Providence, RI (1993). | Zbl: 0804.32011

[11] Jenkins (A.).— Further Reductions of Poincaré-Dulac Normal Forms, Proc. of the Amer. Math. Soc., 136, p. 1671-1680 (2008). | MR: 2373596 | Zbl: 1144.32013

[12] Jenkins (A.).— Holomorphic germs and smooth conjugacy in a punctured neighborhood of the origin, Trans. of the Amer. Math. Soc. 360, no. 1, p. 331-346 (2008). | MR: 2342005 | Zbl: 1130.30024

[13] Koenigs (G.).— Recherches sur les Integral de Certain Equation Fonctionelles, Ann. Scient. Ec. Norm. Sup. 1, p. 1-41 (1884). | Numdam

[14] Malgrange (B.).— Travaux d’Ecalle et de Martinet-Ramis sur les systèmes dynamiques, Séminar Bourbaki, vol. 1981/1982, Astérisque, vol. 92-93, Soc. Math. France, Paris, p. 59-73 (1982). | Numdam | MR: 689526 | Zbl: 0526.58009

[15] Serre (J. P.).— Lie Algebras and Lie Groups: 1964 Lectures Given at Harvard University, W.A.Benjamin Inc., New York (1965). | MR: 218496 | Zbl: 0132.27803

[16] Shcherbakov (A. A.).— Topological classification of germs of conformal mappings with identical linear part, Vestnik Moskov. Univ. Ser. I Mat. Mekh., no. 3, p. 52-57 (1982); English transl. in Moscow Univ. Math. Bull. 37 (1982). | MR: 671059 | Zbl: 0508.30015

[17] Schikhof (W. H.).— Ultrametric Calculus: An Introduction to p-adic Analysis, Cambridge Studies in Advanced Mathematics, 4, Cambridge University Press, Cambridge (1984). | MR: 791759 | Zbl: 0553.26006

[18] Siegel (C. L.).— Iteration of analytic functions, Ann. of Math. 43, p. 607-612 (1942). | MR: 7044 | Zbl: 0061.14904

[19] Vieugué (D.).— Problèmes de Linéarisation dan des Familles de Germes Analytique, Thesis, L’Université D’Orléans (2005).

[20] Voronin (S. M.).— Analytic classification of germs of conformal maps (,0)(,0) with identical linear part, Func. Anal. Appl. 15, p. 1-17 (1981). | MR: 609790 | Zbl: 0463.30010

[21] Yoccoz (J.-C.).— Linéarisation des germes de difféomorphismes holomorphes de (,0), C. R. Acad. Sci. Paris 306, p. 55-58 (1988). | MR: 929279 | Zbl: 0668.58010

[22] Yoccoz (J.-C.).— Théorème de Siegel, nombres de Bryuno et polynômes quadratique, Astérisque 231, p. 3-88 (1995). | MR: 1367353

Cited by Sources: