Soit
Suppose that
@article{AFST_2010_6_19_3-4_635_0, author = {Steven Dale Cutkosky and Samar ElHitti}, title = {Formal prime ideals of infinite value and their algebraic resolution}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {635--649}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {3-4}, year = {2010}, doi = {10.5802/afst.1260}, mrnumber = {2790812}, zbl = {1217.13002}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1260/} }
TY - JOUR AU - Steven Dale Cutkosky AU - Samar ElHitti TI - Formal prime ideals of infinite value and their algebraic resolution JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 635 EP - 649 VL - 19 IS - 3-4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1260/ DO - 10.5802/afst.1260 LA - en ID - AFST_2010_6_19_3-4_635_0 ER -
%0 Journal Article %A Steven Dale Cutkosky %A Samar ElHitti %T Formal prime ideals of infinite value and their algebraic resolution %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 635-649 %V 19 %N 3-4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1260/ %R 10.5802/afst.1260 %G en %F AFST_2010_6_19_3-4_635_0
Steven Dale Cutkosky; Samar ElHitti. Formal prime ideals of infinite value and their algebraic resolution. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 19 (2010) no. 3-4, pp. 635-649. doi : 10.5802/afst.1260. https://afst.centre-mersenne.org/articles/10.5802/afst.1260/
[1] Abhyankar (S.).— Local uniformization on algebraic surfaces over ground fields of characteristic
[2] Abhyankar (S.).— On the valuations centered in a local domain. Amer. J. of Math., 78:321-348 (1956). | MR | Zbl
[3] Abhyankar (S.).— Ramification theoretic methods in algebraic geometry. Bulletin of the Amer. Mathematical Society, 66(4):250-252 (1960). | MR | Zbl
[4] Abhyankar (S.).— Resolution of singularities of embedded algebraic surfaces. Academic Press (1966). | MR | Zbl
[5] Cossart (V.) and Piltant (O.).— Resolution of singularities of threefolds in positive charateristic I. J. of Algebra, 320:1051-1082 (2008). | MR | Zbl
[6] Cossart (V.) and Piltant (O.).— Resolution of singularities of threefolds in positive characteristic II. J. of Algebra, 321:1836-1976 (2009). | MR | Zbl
[7] Cutkosky (S. D.).— Local monomialization and factorization of morphisms. Asterisque, 260 (1999). | MR | Zbl
[8] Cutkosky (S. D.) and Ghezzi (L.).— Completions of valuation rings. Contemporary Mathematics, 386:13-34 (2005). | MR
[9] ElHitti (S.).— Algebraic resolution of formal ideals along a valuation. PhD thesis, University of Missouri (2008). | MR
[10] Favre (C.) and Jonsson (M.).— The valuative tree. Springer (2004). | MR | Zbl
[11] Heinzer (W.) and Sally (J.).— Extensions of valuations to the completion of a local domain. J. of pure and applied Algebra, 71:175-185 (1991). | MR | Zbl
[12] Hironaka (H.).— Resolution of singularities of an algebraic variety over a field of characteristic zero. Annals of Math., 79:109-326 (1964). | MR | Zbl
[13] Knaf (H.) and Kuhlmann (F. V.).— Every place admits local uniformization in a finite extension of the function field. Advances in Math., 221:428-453 (2009). | MR
[14] Kuhlmann (F. V.).— On places of algebraic function fields in arbitrary characteristic. Advances in Math, 188:399-424 (2004). | MR | Zbl
[15] Hà (H. T.), Ghezzi (L.) and Kashcheyeva (O.).— Toroidalization of generatingsequences in dimension two function fields. J. of Algebra, 301:838-866 (2006). | MR | Zbl
[16] Matsumura (H.).— Commutative ring theory. Cambridge University Press, Cambridge (1986). | MR | Zbl
[17] Spivakovsky (M.).— Sandwiched singularities and desingularization of surfaces by normalized nash transforms. Ann. of Math, 131:441-491 (1990). | MR | Zbl
[18] Spivakovsky (M.).— Valuations in function fields of surfaces. Amer. J. Math., 112:107-156 (1990). | MR | Zbl
[19] Teissier (B.).— Valuations, deformations and toric geometry. In S. Kuhlmann F. V. Kuhlmann and M. Marshall, editors, Valuation theory and its applications II, pages 361-459. AMS and Fields Institute (2003.) | MR | Zbl
[20] Temkin (M.).— Inseparable local uniformization. Preprint.
[21] Vaquié (M.).— Extension d’une valuation. Trans. Amer. Math. Soc., 359:3439-3481 (2007). | MR | Zbl
[22] Zariski (O.).— The reduction of the singularities of an algebraic surface. Annals of Math., 40 (1939). | Zbl
[23] Zariski (O.).— Local uniformization of algebraic varieties. Annals of Math., 41:852-896, (1940). | MR | Zbl
[24] Zariski (O.) and Samuel (P.).— Commutative algebra, volume 2. Van Nostrand, Princeton (1960). | MR | Zbl
- Truncated Local Uniformization of Formal Integrable Differential Forms, Qualitative Theory of Dynamical Systems, Volume 21 (2022) no. 1 | DOI:10.1007/s12346-021-00549-8
- Extensions of Valuations to the Henselization and Completion, Acta Mathematica Vietnamica, Volume 44 (2019) no. 1, p. 159 | DOI:10.1007/s40306-018-0267-y
- Perron Transforms, Communications in Algebra, Volume 42 (2014) no. 5, p. 2003 | DOI:10.1080/00927872.2012.754237
Cité par 3 documents. Sources : Crossref