Suppose that is a local domain essentially of finite type over a field of characteristic , and a valuation of the quotient field of which dominates . The rank of such a valuation often increases upon extending the valuation to a valuation dominating , the completion of . When the rank of is , Cutkosky and Ghezzi handle this phenomenon by resolving the prime ideal of infinite value, but give an example showing that when the rank is greater than , there is no natural ideal in that leads to this obstruction. We extend their result on the resolution of prime ideals of infinite value to valuations of arbitrary rank.
Soit un domaine local essentiellement de type fini sur un corps de caractéristique , et une valuation du corps de fractions de qui domine . Le rang d’une telle valuation augmente souvent en prolongeant la valuation a une valuation dominante qui est la completion de . Dans le cas où le rang de est égal a , Cutkosky et Ghezzi manipule ce phénomène en résolvant l’ideal premier de valeur infinie. Dans le cas ou le rang est plus grand que 1, ils donnent un example qui montre qu’il n’y a aucun ideal naturel dans qui mene a cette obstruction. Nous généralisons leurs résultats de resolution des ideaux premiers de valeurs infinies aux valuations de rang arbitraire.
@article{AFST_2010_6_19_3-4_635_0, author = {Steven Dale Cutkosky and Samar ElHitti}, title = {Formal prime ideals of infinite value and their algebraic resolution}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {635--649}, publisher = {Universit\'e Paul Sabatier, Institut de Math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {3-4}, year = {2010}, doi = {10.5802/afst.1260}, mrnumber = {2790812}, zbl = {1217.13002}, language = {en}, url = {https://afst.centre-mersenne.org/articles/10.5802/afst.1260/} }
TY - JOUR AU - Steven Dale Cutkosky AU - Samar ElHitti TI - Formal prime ideals of infinite value and their algebraic resolution JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 635 EP - 649 VL - 19 IS - 3-4 PB - Université Paul Sabatier, Institut de Mathématiques PP - Toulouse UR - https://afst.centre-mersenne.org/articles/10.5802/afst.1260/ DO - 10.5802/afst.1260 LA - en ID - AFST_2010_6_19_3-4_635_0 ER -
%0 Journal Article %A Steven Dale Cutkosky %A Samar ElHitti %T Formal prime ideals of infinite value and their algebraic resolution %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 635-649 %V 19 %N 3-4 %I Université Paul Sabatier, Institut de Mathématiques %C Toulouse %U https://afst.centre-mersenne.org/articles/10.5802/afst.1260/ %R 10.5802/afst.1260 %G en %F AFST_2010_6_19_3-4_635_0
Steven Dale Cutkosky; Samar ElHitti. Formal prime ideals of infinite value and their algebraic resolution. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 19 (2010) no. 3-4, pp. 635-649. doi : 10.5802/afst.1260. https://afst.centre-mersenne.org/articles/10.5802/afst.1260/
[1] Abhyankar (S.).— Local uniformization on algebraic surfaces over ground fields of characteristic . Annals of Math., 63:491-526 (1956). | MR | Zbl
[2] Abhyankar (S.).— On the valuations centered in a local domain. Amer. J. of Math., 78:321-348 (1956). | MR | Zbl
[3] Abhyankar (S.).— Ramification theoretic methods in algebraic geometry. Bulletin of the Amer. Mathematical Society, 66(4):250-252 (1960). | MR | Zbl
[4] Abhyankar (S.).— Resolution of singularities of embedded algebraic surfaces. Academic Press (1966). | MR | Zbl
[5] Cossart (V.) and Piltant (O.).— Resolution of singularities of threefolds in positive charateristic I. J. of Algebra, 320:1051-1082 (2008). | MR | Zbl
[6] Cossart (V.) and Piltant (O.).— Resolution of singularities of threefolds in positive characteristic II. J. of Algebra, 321:1836-1976 (2009). | MR | Zbl
[7] Cutkosky (S. D.).— Local monomialization and factorization of morphisms. Asterisque, 260 (1999). | MR | Zbl
[8] Cutkosky (S. D.) and Ghezzi (L.).— Completions of valuation rings. Contemporary Mathematics, 386:13-34 (2005). | MR
[9] ElHitti (S.).— Algebraic resolution of formal ideals along a valuation. PhD thesis, University of Missouri (2008). | MR
[10] Favre (C.) and Jonsson (M.).— The valuative tree. Springer (2004). | MR | Zbl
[11] Heinzer (W.) and Sally (J.).— Extensions of valuations to the completion of a local domain. J. of pure and applied Algebra, 71:175-185 (1991). | MR | Zbl
[12] Hironaka (H.).— Resolution of singularities of an algebraic variety over a field of characteristic zero. Annals of Math., 79:109-326 (1964). | MR | Zbl
[13] Knaf (H.) and Kuhlmann (F. V.).— Every place admits local uniformization in a finite extension of the function field. Advances in Math., 221:428-453 (2009). | MR
[14] Kuhlmann (F. V.).— On places of algebraic function fields in arbitrary characteristic. Advances in Math, 188:399-424 (2004). | MR | Zbl
[15] Hà (H. T.), Ghezzi (L.) and Kashcheyeva (O.).— Toroidalization of generatingsequences in dimension two function fields. J. of Algebra, 301:838-866 (2006). | MR | Zbl
[16] Matsumura (H.).— Commutative ring theory. Cambridge University Press, Cambridge (1986). | MR | Zbl
[17] Spivakovsky (M.).— Sandwiched singularities and desingularization of surfaces by normalized nash transforms. Ann. of Math, 131:441-491 (1990). | MR | Zbl
[18] Spivakovsky (M.).— Valuations in function fields of surfaces. Amer. J. Math., 112:107-156 (1990). | MR | Zbl
[19] Teissier (B.).— Valuations, deformations and toric geometry. In S. Kuhlmann F. V. Kuhlmann and M. Marshall, editors, Valuation theory and its applications II, pages 361-459. AMS and Fields Institute (2003.) | MR | Zbl
[20] Temkin (M.).— Inseparable local uniformization. Preprint.
[21] Vaquié (M.).— Extension d’une valuation. Trans. Amer. Math. Soc., 359:3439-3481 (2007). | MR | Zbl
[22] Zariski (O.).— The reduction of the singularities of an algebraic surface. Annals of Math., 40 (1939). | Zbl
[23] Zariski (O.).— Local uniformization of algebraic varieties. Annals of Math., 41:852-896, (1940). | MR | Zbl
[24] Zariski (O.) and Samuel (P.).— Commutative algebra, volume 2. Van Nostrand, Princeton (1960). | MR | Zbl
Cited by Sources: